info.debatty.java.graphs.examples.SearchExample Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of java-graphs Show documentation
Show all versions of java-graphs Show documentation
Algorithms that build k-nearest neighbors graph (k-nn graph): Brute-force, NN-Descent,...
/*
* The MIT License
*
* Copyright 2015 Thibault Debatty.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package info.debatty.java.graphs.examples;
import info.debatty.java.graphs.*;
import info.debatty.java.graphs.build.Brute;
import info.debatty.java.graphs.build.GraphBuilder;
import info.debatty.java.stringsimilarity.JaroWinkler;
import java.util.ArrayList;
import java.util.Random;
public class SearchExample {
public static void main(String[] args) {
int tests = 100;
// Number of neighbors to search
int k = 1;
// Number of similarities to compute using approximate search
int max_similaritites = 100;
// Read the file
ArrayList> nodes = GraphBuilder.readFile(
"/home/tibo/Downloads/726-unique-spams");
// Leave some random nodes out for the search queries
Random rand = new Random();
ArrayList> queries = new ArrayList>(tests);
for (int i = 0; i < tests; i++) {
queries.add(nodes.remove(rand.nextInt(nodes.size())));
}
// Define the similarity to use
SimilarityInterface similarity =
new SimilarityInterface() {
public double similarity(String value1, String value2) {
JaroWinkler jw = new JaroWinkler();
return jw.similarity(value1, value2);
}
};
// Compute the graph
Brute builder = new Brute();
builder.setSimilarity(similarity);
builder.setK(20);
Graph graph = builder.computeGraph(nodes);
// Perform some research...
int correct = 0;
for (Node query : queries) {
// Perform GNNS
System.out.println("Query: " + query);
NeighborList resultset_gnss = graph.search(
query.value,
k,
similarity,
max_similaritites);
System.out.println(resultset_gnss);
// Perform linear search
NeighborList resultset_linear = new NeighborList(k);
for (Node candidate : nodes) {
resultset_linear.add(
new Neighbor(
candidate,
similarity.similarity(
query.value,
candidate.value)));
}
System.out.println(resultset_linear);
correct += resultset_gnss.CountCommons(resultset_linear);
}
System.out.println("Correct: " + correct + " / " + tests);
System.out.println("Computed similarities (approximate search): " +
queries.size() * max_similaritites);
System.out.println("Computed similarities (exhaustive search): " +
nodes.size() * tests);
System.out.println("Quality equivalent speedup: " +
(double) nodes.size() * tests * correct /
tests /
(queries.size() * max_similaritites));
}
}