info.debatty.java.graphs.examples.StronglyConnectedExample Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of java-graphs Show documentation
Show all versions of java-graphs Show documentation
Algorithms that build k-nearest neighbors graph (k-nn graph): Brute-force, NN-Descent,...
/*
* The MIT License
*
* Copyright 2015 Thibault Debatty.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package info.debatty.java.graphs.examples;
import info.debatty.java.graphs.Graph;
import info.debatty.java.graphs.Node;
import info.debatty.java.graphs.SimilarityInterface;
import info.debatty.java.graphs.build.Brute;
import java.util.ArrayList;
import java.util.Random;
/**
*
* @author Thibault Debatty
*/
public class StronglyConnectedExample {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// Create some nodes
Random rand = new Random();
ArrayList> nodes = new ArrayList>();
for (int i = 0; i < 100; i++) {
nodes.add(new Node(
String.valueOf(i),
rand.nextDouble() * 100));
nodes.add(new Node(
String.valueOf(100 + i),
1000000 + rand.nextDouble() * 100));
}
// Build the graph
Brute builder = new Brute();
builder.setK(10);
builder.setSimilarity(new SimilarityInterface() {
public double similarity(Double value1, Double value2) {
return 1 / (1 + Math.abs(value1 - value2));
}
});
Graph graph = builder.computeGraph(nodes);
ArrayList> stronglyConnectedComponents = graph.stronglyConnectedComponents();
System.out.printf("Found %d strongly connected components\n", stronglyConnectedComponents.size());
for (Graph component : stronglyConnectedComponents) {
System.out.printf("Contains %d nodes\n", component.size());
System.out.println(component);
}
}
}