info.debatty.java.graphs.build.PartitioningGraphBuilder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of java-graphs Show documentation
Show all versions of java-graphs Show documentation
Algorithms that build k-nearest neighbors graph (k-nn graph): Brute-force, NN-Descent,...
/*
* The MIT License
*
* Copyright 2015 Thibault Debatty.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package info.debatty.java.graphs.build;
import info.debatty.java.graphs.Graph;
import info.debatty.java.graphs.NeighborList;
import java.util.HashMap;
import java.util.List;
import java.util.Map.Entry;
/**
* Abstract class for graph building algorithms that split the dataset into
* partitions (for example using LSH).
*
* The number of stages (n_stages) and the number of partitions (n_partitions)
* allow you to control the speedup and precision.
*
* If brute-force method is used inside the partitions: number of similarities
* to compute ≃ n² / 2 x n_stages / n_partitions where n is the size of the
* dataset
*
* Thus speedup with respect to pure brute force ≃ n_partitions / n_stages
*
* At the same time: - increasing n_stages will increase the precision -
* increasing n_partitions will decrease the precision The exact relation
* between precision and these 2 parameters depends on the algorithm used...
*
* @param The type of nodes value
*/
public abstract class PartitioningGraphBuilder extends GraphBuilder {
protected int oversampling = 2;
protected int n_partitions = 4;
protected GraphBuilder internal_builder = new Brute();
public int getOversampling() {
return oversampling;
}
/**
* Default = 2
*
* @param oversampling
*/
public void setOversampling(int oversampling) {
this.oversampling = oversampling;
}
/**
* Default = 4
*
* @return
*/
public int getNPartitions() {
return n_partitions;
}
/**
* Set the number of partitions to build for each stage. Attention: the
* number of strings per partition should be at least 100 to get relevant
* results! Default = 4
*
* @param n_partitions
*/
public void setNPartitions(int n_partitions) {
this.n_partitions = n_partitions;
}
public GraphBuilder getInternalBuilder() {
return internal_builder;
}
/**
* Default = Brute force
*
* @param internal_builder
*/
public void setInternalBuilder(GraphBuilder internal_builder) {
this.internal_builder = internal_builder;
}
@Override
protected Graph _computeGraph(List nodes) {
// Create $n_stages$ x $n_partitions$ partitions
List[] partitioning = _partition(nodes);
HashMap feedback_data = new HashMap();
// Initialize the graph
Graph neighborlists = new Graph(nodes.size());
for (T node : nodes) {
neighborlists.put(node, new NeighborList(k));
}
internal_builder.setK(k);
internal_builder.setSimilarity(similarity);
// Loop over all partitions to compute the subgraphs
// Could be executed in parallel...
for (int p = 0; p < n_partitions; p++) {
if (partitioning[p] != null && !partitioning[p].isEmpty()) {
Graph subgraph = internal_builder.computeGraph(partitioning[p]);
computed_similarities += internal_builder.getComputedSimilarities();
// Add to current neighborlists
for (Entry e : subgraph.entrySet()) {
neighborlists.getNeighbors(e.getKey()).addAll(e.getValue());
}
}
if (callback != null) {
feedback_data.put("step", "Building graph inside partition");
feedback_data.put("partition", p);
feedback_data.put("computed-similarities", computed_similarities);
callback.call(feedback_data);
}
}
return neighborlists;
}
@Override
public double estimatedSpeedup() {
return (double) n_partitions / (oversampling * oversampling);
}
abstract protected List[] _partition(List nodes);
}