info.debatty.java.graphs.Dijkstra Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of java-graphs Show documentation
Show all versions of java-graphs Show documentation
Algorithms that build k-nearest neighbors graph (k-nn graph): Brute-force, NN-Descent,...
The newest version!
/*
* The MIT License
*
* Copyright 2015 Thibault Debatty.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package info.debatty.java.graphs;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.Map;
import java.util.Set;
/**
* Compute the shortest path (measured as the number of 'hops' from this source
* node to every other node in the graph using Dijkstra algorithm.
*
* @author Thibault Debatty
* @param type of nodes in the graph
*/
public class Dijkstra {
private final Graph graph;
private final Set settled_nodes;
private final Set unsettled_nodes;
private final Map predecessors;
private final Map distances;
/**
* Compute the shortest path from source node to every other node in the
* graph.
*
* @param graph to use for computing path
* @param source node from which to compute distance to every other node
*/
public Dijkstra(final Graph graph, final T source) {
this.graph = graph;
settled_nodes = new HashSet();
unsettled_nodes = new HashSet();
distances = new HashMap();
predecessors = new HashMap();
distances.put(source, 0);
unsettled_nodes.add(source);
while (unsettled_nodes.size() > 0) {
T node = getMinimum(unsettled_nodes);
settled_nodes.add(node);
unsettled_nodes.remove(node);
findMinimalDistances(node);
}
}
/**
* Return the path from the source to the selected target.
*
* @param target node to which we search the path
* @return the path from the source to the selected target
* @throws java.lang.Exception if no path exists to this target
*/
public final LinkedList getPath(final T target) throws Exception {
LinkedList path = new LinkedList();
T step = target;
// check if a path exists
if (predecessors.get(step) == null) {
throw new Exception("No path found to this target");
}
path.add(step);
while (predecessors.get(step) != null) {
step = predecessors.get(step);
path.add(step);
}
// Put it into the correct order
Collections.reverse(path);
return path;
}
/**
* Return the distance (measured as the number of hops) to the most distant
* node.
*
* @return the distance (measured as the number of hops) to the most distant
* node
*/
public final int getLargestDistance() {
int largest = 0;
for (Integer distance : distances.values()) {
if (distance > largest) {
largest = distance;
}
}
return largest;
}
private void findMinimalDistances(final T node) {
if (!graph.containsKey(node) || graph.getNeighbors(node) == null) {
return;
}
for (Neighbor neighbor : graph.getNeighbors(node)) {
T target = neighbor.getNode();
if (getShortestDistance(target) > (getShortestDistance(node) + 1)) {
distances.put(target, getShortestDistance(node) + 1);
predecessors.put(target, node);
unsettled_nodes.add(target);
}
}
}
private T getMinimum(final Set nodes) {
T minimum = null;
for (T node : nodes) {
if (minimum == null) {
minimum = node;
} else {
if (getShortestDistance(node) < getShortestDistance(minimum)) {
minimum = node;
}
}
}
return minimum;
}
private int getShortestDistance(final T destination) {
Integer d = distances.get(destination);
if (d == null) {
return Integer.MAX_VALUE;
} else {
return d;
}
}
}