info.debatty.java.stringsimilarity.examples.SparseDoubleVectorExample Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of java-string-similarity Show documentation
Show all versions of java-string-similarity Show documentation
Implementation of various string similarity and distance algorithms: Levenshtein, Jaro-winkler, n-Gram, Q-Gram, Jaccard index, Longest Common Subsequence edit distance, cosine similarity...
/*
* The MIT License
*
* Copyright 2015 tibo.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package info.debatty.java.stringsimilarity.examples;
import info.debatty.java.utils.SparseDoubleVector;
import java.util.Random;
/**
*
* @author tibo
*/
public class SparseDoubleVectorExample {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
int count = 400;
int size = 1000;
double threshold = 0.7;
System.out.println("Create some random SparseDoubleVector...");
Random r = new Random();
SparseDoubleVector[] data = new SparseDoubleVector[count];
for (int i = 0; i < count; i++) {
double[] v = new double[size];
for (int j = 0; j < size; j++) {
v[j] = r.nextDouble();
}
data[i] = new SparseDoubleVector(v);
}
System.out.println("Compute real similarities...");
double[][] real_similarities = new double[count][count];
for (int i = 0; i < count; i++) {
for (int j = 0; j < i; j++) {
real_similarities[i][j] = data[i].cosineSimilarity(data[j]);
}
}
System.out.println("Downsample the vectors using DIMSUM algorithm...");
for (int i = 0; i < count; i++) {
try {
data[i].sampleDIMSUM(threshold, count, size);
} catch(Exception ex) {
System.out.println(ex.getMessage());
}
}
System.out.println("Compute estimated similarities...");
int above_threshold = 0;
int correct = 0;
for (int i = 0; i < count; i++) {
for (int j = 0; j < i; j++) {
double sim = data[i].cosineSimilarity(data[j]);
if (real_similarities[i][j] >= threshold) {
above_threshold++;
if (Math.abs(real_similarities[i][j] - sim) / real_similarities[i][j] < 0.2) {
correct++;
}
}
}
}
System.out.println("Above threshold: " + above_threshold);
System.out.println("Correct (max relative error 20%)" + correct);
System.out.println("(" + Math.round(100.0 * correct / above_threshold) + "%)");
}
}