
info.debatty.spark.kmedoids.Solution Maven / Gradle / Ivy
/*
* The MIT License
*
* Copyright 2017 Thibault Debatty.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package info.debatty.spark.kmedoids;
import java.util.ArrayList;
/**
* A clustering solution.
*
* Keeps the list of medoids, plus some other values: number of iterations,
* number of computed similarities etc.
*
*
* @author Thibault Debatty
* @param Type of data that will be clustered
*/
public class Solution {
private ArrayList medoids = new ArrayList<>();
private double total_similarity;
private long computed_similarities;
private final long start_time;
private long end_time;
private final long dataset_size;
/**
* Number of candidate solutions that we tried.
*/
private int trials;
/**
* Number of candidate solutions that actually increased the total
* similarity.
*/
private int iterations;
/**
* Initialize a solution with dataset size and computation start time.
* @param dataset_size
*/
public Solution(final long dataset_size) {
this.dataset_size = dataset_size;
this.start_time = System.currentTimeMillis();
}
/**
*
* @return
*/
public final ArrayList getMedoids() {
return medoids;
}
/**
*
* @return
*/
public final double getTotalSimilarity() {
return total_similarity;
}
/**
*
* @return
*/
public final long getComputedSimilarities() {
return computed_similarities;
}
/**
*
* @return
*/
public final long getStartTime() {
return start_time;
}
/**
*
* @return
*/
public final long getEndTime() {
return end_time;
}
/**
*
* @return
*/
public final long getDatasetSize() {
return dataset_size;
}
/**
*
* @return
*/
public final int getTrials() {
return trials;
}
/**
*
* @return
*/
public final int getIterations() {
return iterations;
}
/**
* Set the new medoids and the total similarity of these medoids together.
* @param medoids
* @param total_similarity
*/
public final void setNewMedoids(
final ArrayList medoids, final double total_similarity) {
this.medoids = medoids;
this.total_similarity = total_similarity;
}
/**
*
* @return
*/
@Override
public final String toString() {
return "Total similarity: " + total_similarity + "\n"
+ "Trials: " + trials + "\n"
+ "Iterations: " + iterations + "\n"
+ "Computed similarities: " + computed_similarities + "\n"
+ "Run time: " + ((end_time - start_time) / 1000);
}
/**
* Return a CSV line of the solution.
* @return
*/
public final String toCSV() {
return total_similarity + ";\t" + trials + ";\t" + iterations + ";\t"
+ computed_similarities + ";\t"
+ ((end_time - start_time) / 1000);
}
/**
* Increment the number of computed similarities.
* @param similarities
*/
public final void incComputedSimilarities(final long similarities) {
this.computed_similarities += similarities;
}
/**
*
*/
public final void incIterations() {
iterations++;
}
/**
*
*/
public final void incTrials() {
trials++;
}
/**
* Set end time.
*/
public final void end() {
this.end_time = System.currentTimeMillis();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy