
info.debatty.spark.knngraphs.example.NNDescentCustomValue Maven / Gradle / Ivy
/*
* The MIT License
*
* Copyright 2015 Thibault Debatty.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package info.debatty.spark.knngraphs.example;
import info.debatty.java.graphs.Neighbor;
import info.debatty.java.graphs.NeighborList;
import info.debatty.java.graphs.Node;
import info.debatty.java.graphs.SimilarityInterface;
import info.debatty.spark.knngraphs.builder.NNDescent;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import scala.Tuple2;
/**
* In this example, a custom class is used as node value.
* The only requirement is that the custom class must implement Serializable.
*
* This also allows to support the use case where you have, say, user vectors,
* and item vectors. And you'd like to compute the NN for item-item and the
* user-item similarity.
*
* @author Thibault Debatty
*/
public class NNDescentCustomValue {
/**
* @param args the command line arguments
* @throws java.lang.Exception
*/
public static void main(String[] args) throws Exception {
// Configure spark instance
SparkConf conf = new SparkConf();
conf.setAppName("SparkTest");
conf.setIfMissing("spark.master", "local[*]");
JavaSparkContext sc = new JavaSparkContext(conf);
// Create some nodes
// the value of the nodes will a custom class
List> data = new ArrayList>();
Random rand = new Random();
// Let's add some values of type 1 ...
for (int i = 0; i < 1000; i++) {
CustomValue value = new CustomValue(
CustomValue.TYPE1, rand.nextDouble() * 100);
data.add(new Node("TYPE1_" + String.valueOf(i), value));
}
// ... and some values of type 2
for (int i = 0 ; i < 1000; i++) {
CustomValue value = new CustomValue(
CustomValue.TYPE2,
rand.nextDouble() * 100);
data.add(new Node("TYPE2_" + String.valueOf(i), value));
}
JavaRDD> nodes = sc.parallelize(data);
// Instanciate and configure NNDescent for Integer node values
NNDescent nndes = new NNDescent();
nndes.setK(10);
nndes.setMaxIterations(10);
nndes.setSimilarity(new SimilarityInterface() {
// Define the similarity that will be used
// in this case: 1 / (1 + delta)
public double similarity(CustomValue value1, CustomValue value2) {
// This is specific !!
// We only wish to compute similarities between:
// - type1 and type1 or
// - type1 and type2
// .. but we are not interested in similarities betwteen
// type2 and type2
if (value1.type == CustomValue.TYPE2 &&
value2.type == CustomValue.TYPE2) {
return -1;
}
// The value of nodes is an integer...
return 1.0 / (1.0 + Math.abs(value1.value - value2.value));
}
});
// Compute the graph...
JavaPairRDD graph = nndes.computeGraph(nodes);
// BTW: until now graph is only an execution plan and nothing has been
// executed by the spark cluster...
// This will actually compute the graph...
double total_similarity = graph.aggregate(
0.0,
new Function2,Double>() {
public Double call(
Double val,
Tuple2 tuple) throws Exception {
for (Neighbor n : tuple._2()) {
val += n.similarity;
}
return val;
}
},
new Function2() {
public Double call(
Double val0,
Double val1) throws Exception {
return val0 + val1;
}
});
System.out.println("Total sim: " + total_similarity);
System.out.println(graph.first());
}
}
class CustomValue implements Serializable
{
public static int TYPE1 = 1;
public static int TYPE2 = 2;
public int type;
public double value;
public CustomValue(int type, double value) {
this.type = type;
this.value = value;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy