de.schildbach.pte.LocationUtils Maven / Gradle / Ivy
/*
* Copyright the original author or authors.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package de.schildbach.pte;
import de.schildbach.pte.dto.Point;
/**
* @author Andreas Schildbach
*/
public final class LocationUtils {
public static float computeDistance(final Point p1, final Point p2) {
return computeDistance(p1.getLatAsDouble(), p1.getLonAsDouble(), p2.getLatAsDouble(), p2.getLonAsDouble());
}
/**
* @param lat1
* latitude of origin point in decimal degrees
* @param lon1
* longitude of origin point in decimal degrees
* @param lat2
* latitude of destination point in decimal degrees
* @param lon2
* longitude of destination point in decimal degrees
*
* @return distance in meters
*/
public static float computeDistance(double lat1, double lon1, double lat2, double lon2) {
// Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
// using the "Inverse Formula" (section 4)
final int MAXITERS = 20;
// Convert lat/long to radians
lat1 *= Math.PI / 180.0;
lat2 *= Math.PI / 180.0;
lon1 *= Math.PI / 180.0;
lon2 *= Math.PI / 180.0;
final double a = 6378137.0; // WGS84 major axis
final double b = 6356752.3142; // WGS84 semi-major axis
final double f = (a - b) / a;
final double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b);
final double L = lon2 - lon1;
double A = 0.0;
final double U1 = Math.atan((1.0 - f) * Math.tan(lat1));
final double U2 = Math.atan((1.0 - f) * Math.tan(lat2));
final double cosU1 = Math.cos(U1);
final double cosU2 = Math.cos(U2);
final double sinU1 = Math.sin(U1);
final double sinU2 = Math.sin(U2);
final double cosU1cosU2 = cosU1 * cosU2;
final double sinU1sinU2 = sinU1 * sinU2;
double sigma = 0.0;
double deltaSigma = 0.0;
double cosSqAlpha = 0.0;
double cos2SM = 0.0;
double cosSigma = 0.0;
double sinSigma = 0.0;
double cosLambda = 0.0;
double sinLambda = 0.0;
double lambda = L; // initial guess
for (int iter = 0; iter < MAXITERS; iter++) {
final double lambdaOrig = lambda;
cosLambda = Math.cos(lambda);
sinLambda = Math.sin(lambda);
final double t1 = cosU2 * sinLambda;
final double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda;
final double sinSqSigma = t1 * t1 + t2 * t2; // (14)
sinSigma = Math.sqrt(sinSqSigma);
cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15)
sigma = Math.atan2(sinSigma, cosSigma); // (16)
final double sinAlpha = (sinSigma == 0) ? 0.0 : cosU1cosU2 * sinLambda / sinSigma; // (17)
cosSqAlpha = 1.0 - sinAlpha * sinAlpha;
cos2SM = (cosSqAlpha == 0) ? 0.0 : cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18)
final double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn
A = 1 + (uSquared / 16384.0) * // (3)
(4096.0 + uSquared * (-768 + uSquared * (320.0 - 175.0 * uSquared)));
final double B = (uSquared / 1024.0) * // (4)
(256.0 + uSquared * (-128.0 + uSquared * (74.0 - 47.0 * uSquared)));
final double C = (f / 16.0) * cosSqAlpha * (4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10)
final double cos2SMSq = cos2SM * cos2SM;
deltaSigma = B * sinSigma * // (6)
(cos2SM + (B / 4.0) * (cosSigma * (-1.0 + 2.0 * cos2SMSq)
- (B / 6.0) * cos2SM * (-3.0 + 4.0 * sinSigma * sinSigma) * (-3.0 + 4.0 * cos2SMSq)));
lambda = L + (1.0 - C) * f * sinAlpha
* (sigma + C * sinSigma * (cos2SM + C * cosSigma * (-1.0 + 2.0 * cos2SM * cos2SM))); // (11)
final double delta = (lambda - lambdaOrig) / lambda;
if (Math.abs(delta) < 1.0e-12)
break;
}
return (float) (b * A * (sigma - deltaSigma));
}
}