All Downloads are FREE. Search and download functionalities are using the official Maven repository.

info.laht.threekt.extras.objects.Sky.kt Maven / Gradle / Ivy

The newest version!
package info.laht.threekt.extras.objects

import info.laht.threekt.Side
import info.laht.threekt.core.Shader
import info.laht.threekt.core.Uniform
import info.laht.threekt.geometries.BoxBufferGeometry
import info.laht.threekt.materials.ShaderMaterial
import info.laht.threekt.math.Vector3
import info.laht.threekt.objects.Mesh
import info.laht.threekt.renderers.shaders.cloneUniforms

class Sky : Mesh(BoxBufferGeometry(1000), ShaderMaterial()) {

    val uniforms = (material as ShaderMaterial).uniforms

    init {

        material.fragmentShader = SkyShader.fragmentShader
        material.vertexShader = SkyShader.vertexShader
        material.uniforms.putAll(cloneUniforms(SkyShader.uniforms))

        material.side = Side.Back

    }

}

private val SkyShader = Shader(

    uniforms = mutableMapOf(
        "luminance" to Uniform(1f),
        "turbidity" to Uniform(2f),
        "rayleigh" to Uniform(1f),
        "mieCoefficient" to Uniform(0.005f),
        "mieDirectionalG" to Uniform(0.8f),
        "sunPosition" to Uniform(Vector3(1f, 1f, -1f))
    ),

    vertexShader = """
        
        uniform vec3 sunPosition;
		uniform float rayleigh;
		uniform float turbidity;
		uniform float mieCoefficient;

		varying vec3 vWorldPosition;
		varying vec3 vSunDirection;
		varying float vSunfade;
		varying vec3 vBetaR;
		varying vec3 vBetaM;
		varying float vSunE;

		const vec3 up = vec3( 0.0, 1.0, 0.0 );

		// constants for atmospheric scattering
		const float e = 2.71828182845904523536028747135266249775724709369995957;
		const float pi = 3.141592653589793238462643383279502884197169;

		// wavelength of used primaries, according to preetham
		const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );
		// this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
		// (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
		const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );

		// mie stuff
		// K coefficient for the primaries
		const float v = 4.0;
		const vec3 K = vec3( 0.686, 0.678, 0.666 );
		// MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
		const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );

		// earth shadow hack
		// cutoffAngle = pi / 1.95;
		const float cutoffAngle = 1.6110731556870734;
		const float steepness = 1.5;
		const float EE = 1000.0;

		float sunIntensity( float zenithAngleCos ) {
			zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );
			return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );
		}

		vec3 totalMie( float T ) {
			float c = ( 0.2 * T ) * 10E-18;
			return 0.434 * c * MieConst;
		}

		void main() {

			vec4 worldPosition = modelMatrix * vec4( position, 1.0 );
			vWorldPosition = worldPosition.xyz;

			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
			gl_Position.z = gl_Position.w; // set z to camera.far

			vSunDirection = normalize( sunPosition );

			vSunE = sunIntensity( dot( vSunDirection, up ) );

			vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );

			float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );

		// extinction (absorbtion + out scattering)
		// rayleigh coefficients
			vBetaR = totalRayleigh * rayleighCoefficient;

		// mie coefficients
			vBetaM = totalMie( turbidity ) * mieCoefficient;

		}

    """.trimIndent(),

    fragmentShader = """
        
        varying vec3 vWorldPosition;
		varying vec3 vSunDirection;
		varying float vSunfade;
		varying vec3 vBetaR;
		varying vec3 vBetaM;
		varying float vSunE;

		uniform float luminance;
		uniform float mieDirectionalG;

		const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 );

		// constants for atmospheric scattering
		const float pi = 3.141592653589793238462643383279502884197169;

		const float n = 1.0003; // refractive index of air
		const float N = 2.545E25; // number of molecules per unit volume for air at 288.15K and 1013mb (sea level -45 celsius)

		// optical length at zenith for molecules
		const float rayleighZenithLength = 8.4E3;
		const float mieZenithLength = 1.25E3;
		const vec3 up = vec3( 0.0, 1.0, 0.0 );
		// 66 arc seconds -> degrees, and the cosine of that
		const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;

		// 3.0 / ( 16.0 * pi )
		const float THREE_OVER_SIXTEENPI = 0.05968310365946075;
		// 1.0 / ( 4.0 * pi )
		const float ONE_OVER_FOURPI = 0.07957747154594767;

		float rayleighPhase( float cosTheta ) {
			return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );
		}

		float hgPhase( float cosTheta, float g ) {
			float g2 = pow( g, 2.0 );
			float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );
			return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );
		}

		// Filmic ToneMapping http://filmicgames.com/archives/75
		const float A = 0.15;
		const float B = 0.50;
		const float C = 0.10;
		const float D = 0.20;
		const float E = 0.02;
		const float F = 0.30;

		const float whiteScale = 1.0748724675633854; // 1.0 / Uncharted2Tonemap(1000.0)

		vec3 Uncharted2Tonemap( vec3 x ) {
			return ( ( x * ( A * x + C * B ) + D * E ) / ( x * ( A * x + B ) + D * F ) ) - E / F;
		}


		void main() {
		// optical length
		// cutoff angle at 90 to avoid singularity in next formula.
			float zenithAngle = acos( max( 0.0, dot( up, normalize( vWorldPosition - cameraPos ) ) ) );
			float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );
			float sR = rayleighZenithLength * inverse;
			float sM = mieZenithLength * inverse;

		// combined extinction factor
			vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );

		// in scattering
			float cosTheta = dot( normalize( vWorldPosition - cameraPos ), vSunDirection );

			float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );
			vec3 betaRTheta = vBetaR * rPhase;

			float mPhase = hgPhase( cosTheta, mieDirectionalG );
			vec3 betaMTheta = vBetaM * mPhase;

			vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );
			Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );

		// nightsky
			vec3 direction = normalize( vWorldPosition - cameraPos );
			float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2],
			float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2],
			vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );
			vec3 L0 = vec3( 0.1 ) * Fex;

		// composition + solar disc
			float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );
			L0 += ( vSunE * 19000.0 * Fex ) * sundisk;

			vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );

			vec3 curr = Uncharted2Tonemap( ( log2( 2.0 / pow( luminance, 4.0 ) ) ) * texColor );
			vec3 color = curr * whiteScale;

			vec3 retColor = pow( color, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );

			gl_FragColor = vec4( retColor, 1.0 );

		}
        
    """.trimIndent()

)




© 2015 - 2025 Weber Informatics LLC | Privacy Policy