
info.laht.threekt.extras.objects.Sky.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of core Show documentation
Show all versions of core Show documentation
Port of the three.js 3D javascript library for Kotlin/JVM
The newest version!
package info.laht.threekt.extras.objects
import info.laht.threekt.Side
import info.laht.threekt.core.Shader
import info.laht.threekt.core.Uniform
import info.laht.threekt.geometries.BoxBufferGeometry
import info.laht.threekt.materials.ShaderMaterial
import info.laht.threekt.math.Vector3
import info.laht.threekt.objects.Mesh
import info.laht.threekt.renderers.shaders.cloneUniforms
class Sky : Mesh(BoxBufferGeometry(1000), ShaderMaterial()) {
val uniforms = (material as ShaderMaterial).uniforms
init {
material.fragmentShader = SkyShader.fragmentShader
material.vertexShader = SkyShader.vertexShader
material.uniforms.putAll(cloneUniforms(SkyShader.uniforms))
material.side = Side.Back
}
}
private val SkyShader = Shader(
uniforms = mutableMapOf(
"luminance" to Uniform(1f),
"turbidity" to Uniform(2f),
"rayleigh" to Uniform(1f),
"mieCoefficient" to Uniform(0.005f),
"mieDirectionalG" to Uniform(0.8f),
"sunPosition" to Uniform(Vector3(1f, 1f, -1f))
),
vertexShader = """
uniform vec3 sunPosition;
uniform float rayleigh;
uniform float turbidity;
uniform float mieCoefficient;
varying vec3 vWorldPosition;
varying vec3 vSunDirection;
varying float vSunfade;
varying vec3 vBetaR;
varying vec3 vBetaM;
varying float vSunE;
const vec3 up = vec3( 0.0, 1.0, 0.0 );
// constants for atmospheric scattering
const float e = 2.71828182845904523536028747135266249775724709369995957;
const float pi = 3.141592653589793238462643383279502884197169;
// wavelength of used primaries, according to preetham
const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );
// this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
// (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );
// mie stuff
// K coefficient for the primaries
const float v = 4.0;
const vec3 K = vec3( 0.686, 0.678, 0.666 );
// MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );
// earth shadow hack
// cutoffAngle = pi / 1.95;
const float cutoffAngle = 1.6110731556870734;
const float steepness = 1.5;
const float EE = 1000.0;
float sunIntensity( float zenithAngleCos ) {
zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );
return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );
}
vec3 totalMie( float T ) {
float c = ( 0.2 * T ) * 10E-18;
return 0.434 * c * MieConst;
}
void main() {
vec4 worldPosition = modelMatrix * vec4( position, 1.0 );
vWorldPosition = worldPosition.xyz;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
gl_Position.z = gl_Position.w; // set z to camera.far
vSunDirection = normalize( sunPosition );
vSunE = sunIntensity( dot( vSunDirection, up ) );
vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );
float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );
// extinction (absorbtion + out scattering)
// rayleigh coefficients
vBetaR = totalRayleigh * rayleighCoefficient;
// mie coefficients
vBetaM = totalMie( turbidity ) * mieCoefficient;
}
""".trimIndent(),
fragmentShader = """
varying vec3 vWorldPosition;
varying vec3 vSunDirection;
varying float vSunfade;
varying vec3 vBetaR;
varying vec3 vBetaM;
varying float vSunE;
uniform float luminance;
uniform float mieDirectionalG;
const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 );
// constants for atmospheric scattering
const float pi = 3.141592653589793238462643383279502884197169;
const float n = 1.0003; // refractive index of air
const float N = 2.545E25; // number of molecules per unit volume for air at 288.15K and 1013mb (sea level -45 celsius)
// optical length at zenith for molecules
const float rayleighZenithLength = 8.4E3;
const float mieZenithLength = 1.25E3;
const vec3 up = vec3( 0.0, 1.0, 0.0 );
// 66 arc seconds -> degrees, and the cosine of that
const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;
// 3.0 / ( 16.0 * pi )
const float THREE_OVER_SIXTEENPI = 0.05968310365946075;
// 1.0 / ( 4.0 * pi )
const float ONE_OVER_FOURPI = 0.07957747154594767;
float rayleighPhase( float cosTheta ) {
return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );
}
float hgPhase( float cosTheta, float g ) {
float g2 = pow( g, 2.0 );
float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );
return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );
}
// Filmic ToneMapping http://filmicgames.com/archives/75
const float A = 0.15;
const float B = 0.50;
const float C = 0.10;
const float D = 0.20;
const float E = 0.02;
const float F = 0.30;
const float whiteScale = 1.0748724675633854; // 1.0 / Uncharted2Tonemap(1000.0)
vec3 Uncharted2Tonemap( vec3 x ) {
return ( ( x * ( A * x + C * B ) + D * E ) / ( x * ( A * x + B ) + D * F ) ) - E / F;
}
void main() {
// optical length
// cutoff angle at 90 to avoid singularity in next formula.
float zenithAngle = acos( max( 0.0, dot( up, normalize( vWorldPosition - cameraPos ) ) ) );
float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );
float sR = rayleighZenithLength * inverse;
float sM = mieZenithLength * inverse;
// combined extinction factor
vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );
// in scattering
float cosTheta = dot( normalize( vWorldPosition - cameraPos ), vSunDirection );
float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );
vec3 betaRTheta = vBetaR * rPhase;
float mPhase = hgPhase( cosTheta, mieDirectionalG );
vec3 betaMTheta = vBetaM * mPhase;
vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );
Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );
// nightsky
vec3 direction = normalize( vWorldPosition - cameraPos );
float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2],
float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2],
vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );
vec3 L0 = vec3( 0.1 ) * Fex;
// composition + solar disc
float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );
L0 += ( vSunE * 19000.0 * Fex ) * sundisk;
vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );
vec3 curr = Uncharted2Tonemap( ( log2( 2.0 / pow( luminance, 4.0 ) ) ) * texColor );
vec3 color = curr * whiteScale;
vec3 retColor = pow( color, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );
gl_FragColor = vec4( retColor, 1.0 );
}
""".trimIndent()
)
© 2015 - 2025 Weber Informatics LLC | Privacy Policy