
docgen.templates.msmarco-passage-splade-distil-cocodenser-medium.template Maven / Gradle / Ivy
# Anserini Regressions: MS MARCO Passage Ranking
**Model**: SPLADE-distil CoCodenser Medium
This page describes regression experiments, integrated into Anserini's regression testing framework, using the SPLADE-distil CoCodenser Medium model on the [MS MARCO passage ranking task](https://github.com/microsoft/MSMARCO-Passage-Ranking).
The SPLADE-distil CoCodenser Medium model is open-sourced by [Naver Labs Europe](https://europe.naverlabs.com/research/machine-learning-and-optimization/splade-models).
The exact configurations for these regressions are stored in [this YAML file](${yaml}).
Note that this page is automatically generated from [this template](${template}) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead and then run `bin/build.sh` to rebuild the documentation.
From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:
```bash
python src/main/python/run_regression.py --index --verify --search --regression ${test_name}
```
We make available a version of the MS MARCO passage corpus that has already been processed with SPLADE-distil CoCodenser Medium, i.e., performed model inference on every document and stored the output sparse vectors.
Thus, no neural inference is involved.
From any machine, the following command will download the corpus and perform the complete regression, end to end:
```bash
python src/main/python/run_regression.py --download --index --verify --search --regression ${test_name}
```
The `run_regression.py` script automates the following steps, but if you want to perform each step manually, simply copy/paste from the commands below and you'll obtain the same regression results.
## Corpus Download
Download the corpus and unpack into `collections/`:
```bash
wget https://rgw.cs.uwaterloo.ca/JIMMYLIN-bucket0/data/msmarco-passage-splade_distil_cocodenser_medium.tar -P collections/
tar xvf collections/msmarco-passage-splade_distil_cocodenser_medium.tar -C collections/
```
To confirm, `msmarco-passage-splade_distil_cocodenser_medium.tar` is 4.9 GB and has MD5 checksum `f77239a26d08856e6491a34062893b0c`.
With the corpus downloaded, the following command will perform the remaining steps below:
```bash
python src/main/python/run_regression.py --index --verify --search --regression ${test_name} \
--corpus-path collections/${corpus}
```
## Indexing
Sample indexing command:
```bash
${index_cmds}
```
The path `/path/to/${corpus}/` should point to the corpus downloaded above.
The important indexing options to note here are `-impact -pretokenized`: the first tells Anserini not to encode BM25 doc lengths into Lucene's norms (which is the default) and the second option says not to apply any additional tokenization on the pre-encoded tokens.
Upon completion, we should have an index with 8,841,823 documents.
For additional details, see explanation of [common indexing options](common-indexing-options.md).
## Retrieval
Topics and qrels are stored in [`src/main/resources/topics-and-qrels/`](../src/main/resources/topics-and-qrels/).
The regression experiments here evaluate on the 6980 dev set questions; see [this page](experiments-msmarco-passage.md) for more details.
After indexing has completed, you should be able to perform retrieval as follows:
```bash
${ranking_cmds}
```
Evaluation can be performed using `trec_eval`:
```bash
${eval_cmds}
```
## Effectiveness
With the above commands, you should be able to reproduce the following results:
${effectiveness}
## Reproduction Log[*](reproducibility.md)
To add to this reproduction log, modify [this template](${template}) and run `bin/build.sh` to rebuild the documentation.
+ Results reproduced by [@lintool](https://github.com/lintool) on 2022-06-14 (commit [`dc07344`](https://github.com/castorini/anserini/commit/dc073447c8a0c07b53d979c49bf1e2e018200508))
© 2015 - 2025 Weber Informatics LLC | Privacy Policy