io.cequence.pineconescala.service.PineconeIndexServiceImpl.scala Maven / Gradle / Ivy
package io.cequence.pineconescala.service
import akka.stream.Materializer
import com.typesafe.config.{Config, ConfigFactory}
import io.cequence.pineconescala.JsonFormats._
import io.cequence.pineconescala.PineconeScalaClientException
import io.cequence.pineconescala.domain.response._
import io.cequence.pineconescala.domain.settings.IndexSettings.{CreatePodBasedIndexSettings, CreateServerlessIndexSettings}
import io.cequence.pineconescala.domain.settings._
import io.cequence.pineconescala.domain.PodType
import io.cequence.wsclient.JsonUtil.JsonOps
import io.cequence.wsclient.ResponseImplicits._
import io.cequence.wsclient.domain.{RichResponse, WsRequestContext}
import io.cequence.wsclient.service.WSClientEngine
import io.cequence.wsclient.service.WSClientWithEngineTypes.WSClientWithEngine
import io.cequence.wsclient.service.ws.{PlayWSClientEngine, Timeouts}
import play.api.libs.json.JsValue
import scala.concurrent.{ExecutionContext, Future}
private final class ServerlessIndexServiceImpl(
apiKey: String,
explTimeouts: Option[Timeouts] = None
)(
override implicit val ec: ExecutionContext,
override val materializer: Materializer
) extends PineconeIndexServiceImpl[CreateServerlessIndexSettings](
apiKey,
None,
coreUrl = "https://api.pinecone.io/",
explTimeouts
)(ec, materializer)
with PineconeServerlessIndexService {
override protected def indexesEndpoint: EndPoint = EndPoint.indexes
/**
* This operation creates a Pinecone index. You can use it to specify the measure of
* similarity, the dimension of vectors to be stored in the index, the numbers of replicas to
* use, and more.
*
* @param name
* The name of the index to be created. The maximum length is 45 characters.
* @param dimension
* The dimensions of the vectors to be inserted in the index
* @param settings
* The settings for the index
* @return
* Whether the index was created successfully or not.
* @see
* Pinecone Doc
*/
override def createIndex(
name: String,
dimension: Int,
settings: CreateServerlessIndexSettings
): Future[CreateResponse] =
execPOSTRich(
indexesEndpoint,
bodyParams = {
jsonBodyParams(
Tag.fromCreateServerlessIndexSettings(name, dimension, settings): _*
)
},
acceptableStatusCodes = Nil // don't parse response at all
).map(handleCreateResponse)
override def describeIndexResponse(json: JsValue): IndexInfo =
json.asSafe[ServerlessIndexInfo]
override def describeIndexTyped(
indexName: String
): Future[Option[ServerlessIndexInfo]] =
describeIndex(indexName).map(
_.map(_.asInstanceOf[ServerlessIndexInfo])
)
}
private final class PineconePodPineconeBasedImpl(
apiKey: String,
environment: String,
explTimeouts: Option[Timeouts] = None
)(
override implicit val ec: ExecutionContext,
override val materializer: Materializer
) extends PineconeIndexServiceImpl[CreatePodBasedIndexSettings](
apiKey,
Some(environment),
coreUrl = s"https://controller.${environment}.pinecone.io/",
explTimeouts
)(ec, materializer)
with PineconePodBasedIndexService {
override protected def indexesEndpoint: EndPoint = EndPoint.databases
/**
* This operation creates a Pinecone index. You can use it to specify the measure of
* similarity, the dimension of vectors to be stored in the index, the numbers of replicas to
* use, and more.
*
* @param name
* The name of the index to be created. The maximum length is 45 characters.
* @param dimension
* The dimensions of the vectors to be inserted in the index
* @param settings
* The settings for the index
* @return
* Whether the index was created successfully or not.
* @see
* Pinecone Doc
*/
override def createIndex(
name: String,
dimension: Int,
settings: CreatePodBasedIndexSettings
): Future[CreateResponse] =
execPOSTRich(
indexesEndpoint,
bodyParams = jsonBodyParams(
Tag.fromCreatePodBasedIndexSettings(name, dimension, settings): _*
),
acceptableStatusCodes = Nil // don't parse response at all
).map(handleCreateResponse)
override def configureIndex(
indexName: String,
replicas: Option[Int],
podType: Option[PodType]
): Future[ConfigureIndexResponse] =
execPATCRich(
indexesEndpoint,
endPointParam = Some(indexName),
bodyParams = jsonBodyParams(
Tag.replicas -> replicas,
Tag.pod_type -> podType.map(_.toString)
)
).map { richResponse =>
val status = richResponse.status
status.code match {
case 202 => ConfigureIndexResponse.Updated
case 400 => ConfigureIndexResponse.BadRequestNotEnoughQuota
case 404 => ConfigureIndexResponse.NotFound
case _ =>
throw new PineconeScalaClientException(s"Code ${status.code} : ${status.message}")
}
}
override protected def describeIndexResponse(json: JsValue): IndexInfo =
json.asSafe[PodBasedIndexInfo]
override def describeIndexTyped(
indexName: String
): Future[Option[PodBasedIndexInfo]] =
describeIndex(indexName).map(
_.map(_.asInstanceOf[PodBasedIndexInfo])
)
override def createCollection(
name: String,
source: String
): Future[CreateResponse] =
execPOSTRich(
EndPoint.collections,
bodyParams = jsonBodyParams(
Tag.name -> Some(name),
Tag.source -> Some(source)
),
acceptableStatusCodes = Nil // don't parse response at all
).map(handleCreateResponse)
override def listCollections: Future[Seq[String]] =
execGET(EndPoint.collections).map(
_.asSafeJson[Seq[String]]
// response
// .asSafe[Seq[String]](response \ "collections")
// .asOpt[Seq[JsValue]]
// .map(x => x.map(_ \ "name").map(_.as[String]))
// .getOrElse(response.asSafe[Seq[String]])
)
}
/**
* Private impl. class of [[PineconeIndexService]].
*
* @param apiKey
* @param environment
* (optional)
* @since Apr
* 2023
*/
abstract class PineconeIndexServiceImpl[S <: IndexSettings](
apiKey: String,
environment: Option[String],
coreUrl: String,
explicitTimeouts: Option[Timeouts] = None
)(
implicit val ec: ExecutionContext,
val materializer: Materializer
) extends PineconeIndexService[S]
with WSClientWithEngine {
override protected type PEP = EndPoint
override protected type PT = Tag
// we use play-ws backend
override protected val engine: WSClientEngine = PlayWSClientEngine(
coreUrl,
requestContext = WsRequestContext(
authHeaders = Seq(("Api-Key", apiKey)),
explTimeouts = explicitTimeouts
)
)
def isPodBasedIndex: Boolean = environment.isDefined
def isServerlessIndex: Boolean = !isPodBasedIndex
override def describeCollection(
collectionName: String
): Future[Option[CollectionInfo]] =
execGETRich(
EndPoint.collections,
endPointParam = Some(collectionName)
).map { response =>
handleNotFoundAndError(response).map(
_.asSafeJson[CollectionInfo]
)
}
override def deleteCollection(
collectionName: String
): Future[DeleteResponse] =
execDELETERich(
EndPoint.collections,
endPointParam = Some(collectionName),
acceptableStatusCodes = Nil // don't parse response at all
).map(handleDeleteResponse)
override def listIndexes: Future[Seq[String]] =
execGET(indexesEndpoint).map(response =>
(response.json \ "indexes")
.asOpt[Seq[JsValue]]
.map(indexes => {
indexes.flatMap(index => (index \ "name").asOpt[String])
})
.getOrElse(
response.asSafeJson[Seq[String]]
)
)
protected def describeIndexResponse(json: JsValue): IndexInfo
override def describeIndex(
indexName: String
): Future[Option[IndexInfo]] =
execGETRich(
indexesEndpoint,
endPointParam = Some(indexName)
).map { richResponse =>
handleNotFoundAndError(richResponse).map(response =>
describeIndexResponse(response.json)
)
}
override def deleteIndex(
indexName: String
): Future[DeleteResponse] =
execDELETERich(
indexesEndpoint,
endPointParam = Some(indexName),
acceptableStatusCodes = Nil // don't parse response at all
).map(handleDeleteResponse)
// aux
// if environment is specified (pod-based arch) we use databases endpoint,
// otherwise (serverless arch) we use indexes endpoint
protected def indexesEndpoint: PEP // Either[EndPoint.databases.type, EndPoint.indexes.type]
/**
* This operation creates a Pinecone index. You can use it to specify the measure of
* similarity, the dimension of vectors to be stored in the index, the numbers of replicas to
* use, and more.
*
* @param name
* The name of the index to be created. The maximum length is 45 characters.
* @param dimension
* The dimensions of the vectors to be inserted in the index
* @param settings
* The settings for the index
* @return
* Whether the index was created successfully or not.
* @see
* Pinecone Doc
*/
override def createIndex(
name: String,
dimension: Int,
settings: S
): Future[CreateResponse]
override protected def handleErrorCodes(
httpCode: Int,
message: String
): Nothing =
throw new PineconeScalaClientException(s"Code ${httpCode} : ${message}")
protected def handleCreateResponse(response: RichResponse): CreateResponse =
response.status.code match {
case 201 => CreateResponse.Created
// Encountered when request exceeds quota or an invalid index name.
case 400 => CreateResponse.BadRequest
case 409 => CreateResponse.AlreadyExists
case _ =>
throw new PineconeScalaClientException(
s"Code ${response.status.code} : ${response.status.message}"
)
}
protected def handleDeleteResponse(response: RichResponse): DeleteResponse =
response.status.code match {
case 202 => DeleteResponse.Deleted
case 404 => DeleteResponse.NotFound
case _ =>
throw new PineconeScalaClientException(
s"Code ${response.status.code} : ${response.status.message}"
)
}
}
object PineconeIndexServiceFactory extends PineconeServiceFactoryHelper {
def apply(
apiKey: String,
environment: String,
timeouts: Option[Timeouts]
)(
implicit ec: ExecutionContext,
materializer: Materializer
): PineconePodBasedIndexService =
new PineconePodPineconeBasedImpl(apiKey, environment, timeouts)
def apply(
apiKey: String,
timeouts: Option[Timeouts]
)(
implicit ec: ExecutionContext,
materializer: Materializer
): PineconeServerlessIndexService =
new ServerlessIndexServiceImpl(apiKey, timeouts)
def apply(
)(
implicit ec: ExecutionContext,
materializer: Materializer
): Either[PineconePodBasedIndexService, PineconeServerlessIndexService] =
apply(ConfigFactory.load(configFileName))
def apply(
config: Config
)(
implicit ec: ExecutionContext,
materializer: Materializer
): Either[PineconePodBasedIndexService, PineconeServerlessIndexService] = {
val timeouts = loadTimeouts(config)
apply(
apiKey = config.getString(s"$configPrefix.apiKey"),
environment = loadPodEnv(config),
timeouts = timeouts.toOption
)
}
def apply(
apiKey: String,
environment: Option[String],
timeouts: Option[Timeouts]
)(
implicit ec: ExecutionContext,
materializer: Materializer
): Either[PineconePodBasedIndexService, PineconeServerlessIndexService] =
environment match {
case Some(podEnv) =>
Left(new PineconePodPineconeBasedImpl(apiKey, podEnv, timeouts))
case None =>
Right(new ServerlessIndexServiceImpl(apiKey, timeouts))
}
// if we don't care whether it's pod-based or serverless
implicit class FactoryImplicits(
either: Either[PineconePodBasedIndexService, PineconeServerlessIndexService]
) {
def asOne: PineconeIndexService[_] =
either match {
case Left(service) => service
case Right(service) => service
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy