io.cloudshiftdev.awscdk.services.personalize.CfnSolutionProps.kt Maven / Gradle / Ivy
The newest version!
@file:Suppress("RedundantVisibilityModifier","RedundantUnitReturnType","RemoveRedundantQualifierName","unused","UnusedImport","ClassName","REDUNDANT_PROJECTION","DEPRECATION")
package io.cloudshiftdev.awscdk.services.personalize
import io.cloudshiftdev.awscdk.IResolvable
import io.cloudshiftdev.awscdk.common.CdkDslMarker
import io.cloudshiftdev.awscdk.common.CdkObject
import io.cloudshiftdev.awscdk.common.CdkObjectWrappers
import kotlin.Any
import kotlin.Boolean
import kotlin.String
import kotlin.Unit
import kotlin.jvm.JvmName
/**
* Properties for defining a `CfnSolution`.
*
* Example:
*
* ```
* // The code below shows an example of how to instantiate this type.
* // The values are placeholders you should change.
* import io.cloudshiftdev.awscdk.services.personalize.*;
* Object autoMlConfig;
* Object hpoConfig;
* CfnSolutionProps cfnSolutionProps = CfnSolutionProps.builder()
* .datasetGroupArn("datasetGroupArn")
* .name("name")
* // the properties below are optional
* .eventType("eventType")
* .performAutoMl(false)
* .performHpo(false)
* .recipeArn("recipeArn")
* .solutionConfig(SolutionConfigProperty.builder()
* .algorithmHyperParameters(Map.of(
* "algorithmHyperParametersKey", "algorithmHyperParameters"))
* .autoMlConfig(autoMlConfig)
* .eventValueThreshold("eventValueThreshold")
* .featureTransformationParameters(Map.of(
* "featureTransformationParametersKey", "featureTransformationParameters"))
* .hpoConfig(hpoConfig)
* .build())
* .build();
* ```
*
* [Documentation](http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html)
*/
public interface CfnSolutionProps {
/**
* The Amazon Resource Name (ARN) of the dataset group that provides the training data.
*
* [Documentation](http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html#cfn-personalize-solution-datasetgrouparn)
*/
public fun datasetGroupArn(): String
/**
* The event type (for example, 'click' or 'like') that is used for training the model.
*
* If no `eventType` is provided, Amazon Personalize uses all interactions for training with equal
* weight regardless of type.
*
* [Documentation](http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html#cfn-personalize-solution-eventtype)
*/
public fun eventType(): String? = unwrap(this).getEventType()
/**
* The name of the solution.
*
* [Documentation](http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html#cfn-personalize-solution-name)
*/
public fun name(): String
/**
* We don't recommend enabling automated machine learning.
*
* Instead, match your use case to the available Amazon Personalize recipes. For more information,
* see [Determining your use
* case.](https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html)
*
* When true, Amazon Personalize performs a search for the best USER_PERSONALIZATION recipe from
* the list specified in the solution configuration ( `recipeArn` must not be specified). When false
* (the default), Amazon Personalize uses `recipeArn` for training.
*
* [Documentation](http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html#cfn-personalize-solution-performautoml)
*/
public fun performAutoMl(): Any? = unwrap(this).getPerformAutoMl()
/**
* Whether to perform hyperparameter optimization (HPO) on the chosen recipe.
*
* The default is `false` .
*
* [Documentation](http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html#cfn-personalize-solution-performhpo)
*/
public fun performHpo(): Any? = unwrap(this).getPerformHpo()
/**
* The ARN of the recipe used to create the solution.
*
* This is required when `performAutoML` is false.
*
* [Documentation](http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html#cfn-personalize-solution-recipearn)
*/
public fun recipeArn(): String? = unwrap(this).getRecipeArn()
/**
* Describes the configuration properties for the solution.
*
* [Documentation](http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html#cfn-personalize-solution-solutionconfig)
*/
public fun solutionConfig(): Any? = unwrap(this).getSolutionConfig()
/**
* A builder for [CfnSolutionProps]
*/
@CdkDslMarker
public interface Builder {
/**
* @param datasetGroupArn The Amazon Resource Name (ARN) of the dataset group that provides the
* training data.
*/
public fun datasetGroupArn(datasetGroupArn: String)
/**
* @param eventType The event type (for example, 'click' or 'like') that is used for training
* the model.
* If no `eventType` is provided, Amazon Personalize uses all interactions for training with
* equal weight regardless of type.
*/
public fun eventType(eventType: String)
/**
* @param name The name of the solution.
*/
public fun name(name: String)
/**
* @param performAutoMl We don't recommend enabling automated machine learning.
* Instead, match your use case to the available Amazon Personalize recipes. For more
* information, see [Determining your use
* case.](https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html)
*
* When true, Amazon Personalize performs a search for the best USER_PERSONALIZATION recipe from
* the list specified in the solution configuration ( `recipeArn` must not be specified). When
* false (the default), Amazon Personalize uses `recipeArn` for training.
*/
public fun performAutoMl(performAutoMl: Boolean)
/**
* @param performAutoMl We don't recommend enabling automated machine learning.
* Instead, match your use case to the available Amazon Personalize recipes. For more
* information, see [Determining your use
* case.](https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html)
*
* When true, Amazon Personalize performs a search for the best USER_PERSONALIZATION recipe from
* the list specified in the solution configuration ( `recipeArn` must not be specified). When
* false (the default), Amazon Personalize uses `recipeArn` for training.
*/
public fun performAutoMl(performAutoMl: IResolvable)
/**
* @param performHpo Whether to perform hyperparameter optimization (HPO) on the chosen recipe.
* The default is `false` .
*/
public fun performHpo(performHpo: Boolean)
/**
* @param performHpo Whether to perform hyperparameter optimization (HPO) on the chosen recipe.
* The default is `false` .
*/
public fun performHpo(performHpo: IResolvable)
/**
* @param recipeArn The ARN of the recipe used to create the solution.
* This is required when `performAutoML` is false.
*/
public fun recipeArn(recipeArn: String)
/**
* @param solutionConfig Describes the configuration properties for the solution.
*/
public fun solutionConfig(solutionConfig: IResolvable)
/**
* @param solutionConfig Describes the configuration properties for the solution.
*/
public fun solutionConfig(solutionConfig: CfnSolution.SolutionConfigProperty)
/**
* @param solutionConfig Describes the configuration properties for the solution.
*/
@kotlin.Suppress("INAPPLICABLE_JVM_NAME")
@JvmName("9f08e0cfe3927e144926376a24818d32e60b350ff8a7491d6b3c45e60c4cc1db")
public fun solutionConfig(solutionConfig: CfnSolution.SolutionConfigProperty.Builder.() -> Unit)
}
private class BuilderImpl : Builder {
private val cdkBuilder: software.amazon.awscdk.services.personalize.CfnSolutionProps.Builder =
software.amazon.awscdk.services.personalize.CfnSolutionProps.builder()
/**
* @param datasetGroupArn The Amazon Resource Name (ARN) of the dataset group that provides the
* training data.
*/
override fun datasetGroupArn(datasetGroupArn: String) {
cdkBuilder.datasetGroupArn(datasetGroupArn)
}
/**
* @param eventType The event type (for example, 'click' or 'like') that is used for training
* the model.
* If no `eventType` is provided, Amazon Personalize uses all interactions for training with
* equal weight regardless of type.
*/
override fun eventType(eventType: String) {
cdkBuilder.eventType(eventType)
}
/**
* @param name The name of the solution.
*/
override fun name(name: String) {
cdkBuilder.name(name)
}
/**
* @param performAutoMl We don't recommend enabling automated machine learning.
* Instead, match your use case to the available Amazon Personalize recipes. For more
* information, see [Determining your use
* case.](https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html)
*
* When true, Amazon Personalize performs a search for the best USER_PERSONALIZATION recipe from
* the list specified in the solution configuration ( `recipeArn` must not be specified). When
* false (the default), Amazon Personalize uses `recipeArn` for training.
*/
override fun performAutoMl(performAutoMl: Boolean) {
cdkBuilder.performAutoMl(performAutoMl)
}
/**
* @param performAutoMl We don't recommend enabling automated machine learning.
* Instead, match your use case to the available Amazon Personalize recipes. For more
* information, see [Determining your use
* case.](https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html)
*
* When true, Amazon Personalize performs a search for the best USER_PERSONALIZATION recipe from
* the list specified in the solution configuration ( `recipeArn` must not be specified). When
* false (the default), Amazon Personalize uses `recipeArn` for training.
*/
override fun performAutoMl(performAutoMl: IResolvable) {
cdkBuilder.performAutoMl(performAutoMl.let(IResolvable.Companion::unwrap))
}
/**
* @param performHpo Whether to perform hyperparameter optimization (HPO) on the chosen recipe.
* The default is `false` .
*/
override fun performHpo(performHpo: Boolean) {
cdkBuilder.performHpo(performHpo)
}
/**
* @param performHpo Whether to perform hyperparameter optimization (HPO) on the chosen recipe.
* The default is `false` .
*/
override fun performHpo(performHpo: IResolvable) {
cdkBuilder.performHpo(performHpo.let(IResolvable.Companion::unwrap))
}
/**
* @param recipeArn The ARN of the recipe used to create the solution.
* This is required when `performAutoML` is false.
*/
override fun recipeArn(recipeArn: String) {
cdkBuilder.recipeArn(recipeArn)
}
/**
* @param solutionConfig Describes the configuration properties for the solution.
*/
override fun solutionConfig(solutionConfig: IResolvable) {
cdkBuilder.solutionConfig(solutionConfig.let(IResolvable.Companion::unwrap))
}
/**
* @param solutionConfig Describes the configuration properties for the solution.
*/
override fun solutionConfig(solutionConfig: CfnSolution.SolutionConfigProperty) {
cdkBuilder.solutionConfig(solutionConfig.let(CfnSolution.SolutionConfigProperty.Companion::unwrap))
}
/**
* @param solutionConfig Describes the configuration properties for the solution.
*/
@kotlin.Suppress("INAPPLICABLE_JVM_NAME")
@JvmName("9f08e0cfe3927e144926376a24818d32e60b350ff8a7491d6b3c45e60c4cc1db")
override
fun solutionConfig(solutionConfig: CfnSolution.SolutionConfigProperty.Builder.() -> Unit):
Unit = solutionConfig(CfnSolution.SolutionConfigProperty(solutionConfig))
public fun build(): software.amazon.awscdk.services.personalize.CfnSolutionProps =
cdkBuilder.build()
}
private class Wrapper(
cdkObject: software.amazon.awscdk.services.personalize.CfnSolutionProps,
) : CdkObject(cdkObject),
CfnSolutionProps {
/**
* The Amazon Resource Name (ARN) of the dataset group that provides the training data.
*
* [Documentation](http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html#cfn-personalize-solution-datasetgrouparn)
*/
override fun datasetGroupArn(): String = unwrap(this).getDatasetGroupArn()
/**
* The event type (for example, 'click' or 'like') that is used for training the model.
*
* If no `eventType` is provided, Amazon Personalize uses all interactions for training with
* equal weight regardless of type.
*
* [Documentation](http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html#cfn-personalize-solution-eventtype)
*/
override fun eventType(): String? = unwrap(this).getEventType()
/**
* The name of the solution.
*
* [Documentation](http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html#cfn-personalize-solution-name)
*/
override fun name(): String = unwrap(this).getName()
/**
* We don't recommend enabling automated machine learning.
*
* Instead, match your use case to the available Amazon Personalize recipes. For more
* information, see [Determining your use
* case.](https://docs.aws.amazon.com/personalize/latest/dg/determining-use-case.html)
*
* When true, Amazon Personalize performs a search for the best USER_PERSONALIZATION recipe from
* the list specified in the solution configuration ( `recipeArn` must not be specified). When
* false (the default), Amazon Personalize uses `recipeArn` for training.
*
* [Documentation](http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html#cfn-personalize-solution-performautoml)
*/
override fun performAutoMl(): Any? = unwrap(this).getPerformAutoMl()
/**
* Whether to perform hyperparameter optimization (HPO) on the chosen recipe.
*
* The default is `false` .
*
* [Documentation](http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html#cfn-personalize-solution-performhpo)
*/
override fun performHpo(): Any? = unwrap(this).getPerformHpo()
/**
* The ARN of the recipe used to create the solution.
*
* This is required when `performAutoML` is false.
*
* [Documentation](http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html#cfn-personalize-solution-recipearn)
*/
override fun recipeArn(): String? = unwrap(this).getRecipeArn()
/**
* Describes the configuration properties for the solution.
*
* [Documentation](http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html#cfn-personalize-solution-solutionconfig)
*/
override fun solutionConfig(): Any? = unwrap(this).getSolutionConfig()
}
public companion object {
public operator fun invoke(block: Builder.() -> Unit = {}): CfnSolutionProps {
val builderImpl = BuilderImpl()
return Wrapper(builderImpl.apply(block).build())
}
internal fun wrap(cdkObject: software.amazon.awscdk.services.personalize.CfnSolutionProps):
CfnSolutionProps = CdkObjectWrappers.wrap(cdkObject) as? CfnSolutionProps ?:
Wrapper(cdkObject)
internal fun unwrap(wrapped: CfnSolutionProps):
software.amazon.awscdk.services.personalize.CfnSolutionProps = (wrapped as
CdkObject).cdkObject as software.amazon.awscdk.services.personalize.CfnSolutionProps
}
}