io.deephaven.engine.table.impl.by.DoubleChunkedVarOperator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of deephaven-engine-table Show documentation
Show all versions of deephaven-engine-table Show documentation
Engine Table: Implementation and closely-coupled utilities
/**
* Copyright (c) 2016-2022 Deephaven Data Labs and Patent Pending
*/
/*
* ---------------------------------------------------------------------------------------------------------------------
* AUTO-GENERATED CLASS - DO NOT EDIT MANUALLY - for any changes edit FloatChunkedVarOperator and regenerate
* ---------------------------------------------------------------------------------------------------------------------
*/
package io.deephaven.engine.table.impl.by;
import io.deephaven.chunk.attributes.ChunkLengths;
import io.deephaven.chunk.attributes.ChunkPositions;
import io.deephaven.chunk.attributes.Values;
import io.deephaven.engine.util.NullSafeAddition;
import io.deephaven.engine.table.ColumnSource;
import io.deephaven.engine.table.impl.sources.DoubleArraySource;
import io.deephaven.chunk.*;
import io.deephaven.engine.rowset.chunkattributes.RowKeys;
import org.apache.commons.lang3.mutable.MutableDouble;
import org.apache.commons.lang3.mutable.MutableInt;
import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.Map;
import static io.deephaven.engine.table.impl.by.RollupConstants.*;
/**
* Iterative variance operator.
*/
final class DoubleChunkedVarOperator extends FpChunkedNonNormalCounter implements IterativeChunkedAggregationOperator {
private final String name;
private final boolean exposeInternalColumns;
private final boolean std;
private final NonNullCounter nonNullCounter = new NonNullCounter();
private final DoubleArraySource resultColumn = new DoubleArraySource();
private final DoubleArraySource sumSource = new DoubleArraySource();
private final DoubleArraySource sum2Source = new DoubleArraySource();
DoubleChunkedVarOperator(boolean std, String name, boolean exposeInternalColumns) {
this.std = std;
this.name = name;
this.exposeInternalColumns = exposeInternalColumns;
}
@Override
public void addChunk(BucketedContext context, Chunk extends Values> values, LongChunk extends RowKeys> inputRowKeys, IntChunk destinations, IntChunk startPositions, IntChunk length, WritableBooleanChunk stateModified) {
final DoubleChunk extends Values> asDoubleChunk = values.asDoubleChunk();
for (int ii = 0; ii < startPositions.size(); ++ii) {
final int startPosition = startPositions.get(ii);
final long destination = destinations.get(startPosition);
stateModified.set(ii, addChunk(asDoubleChunk, destination, startPosition, length.get(ii)));
}
}
@Override
public void removeChunk(BucketedContext context, Chunk extends Values> values, LongChunk extends RowKeys> inputRowKeys, IntChunk destinations, IntChunk startPositions, IntChunk length, WritableBooleanChunk stateModified) {
final DoubleChunk extends Values> asDoubleChunk = values.asDoubleChunk();
for (int ii = 0; ii < startPositions.size(); ++ii) {
final int startPosition = startPositions.get(ii);
final long destination = destinations.get(startPosition);
stateModified.set(ii, removeChunk(asDoubleChunk, destination, startPosition, length.get(ii)));
}
}
@Override
public boolean addChunk(SingletonContext context, int chunkSize, Chunk extends Values> values, LongChunk extends RowKeys> inputRowKeys, long destination) {
return addChunk(values.asDoubleChunk(), destination, 0, values.size());
}
@Override
public boolean removeChunk(SingletonContext context, int chunkSize, Chunk extends Values> values, LongChunk extends RowKeys> inputRowKeys, long destination) {
return removeChunk(values.asDoubleChunk(), destination, 0, values.size());
}
private boolean addChunk(DoubleChunk extends Values> values, long destination, int chunkStart, int chunkSize) {
final MutableDouble sum2 = new MutableDouble();
final MutableInt chunkNormalCount = new MutableInt();
final MutableInt chunkNanCount = new MutableInt();
final MutableInt chunkInfinityCount = new MutableInt();
final MutableInt chunkMinusInfinity = new MutableInt();
final double sum = SumDoubleChunk.sum2DoubleChunk(values, chunkStart, chunkSize, chunkNormalCount, chunkNanCount, chunkInfinityCount, chunkMinusInfinity, sum2);
final long totalPositiveInfinities = updatePositiveInfinityCount(destination, chunkInfinityCount.intValue());
final long totalNegativeInfinities = updateNegativeInfinityCount(destination, chunkMinusInfinity.intValue());
final long totalNanCount = updateNanCount(destination, chunkNanCount.intValue());
final boolean forceNanResult = totalNegativeInfinities > 0 || totalPositiveInfinities > 0 || totalNanCount > 0;
if (chunkNormalCount.intValue() > 0) {
final long nonNullCount = nonNullCounter.addNonNullUnsafe(destination, chunkNormalCount.intValue());
final double newSum = NullSafeAddition.plusDouble(sumSource.getUnsafe(destination), sum);
final double newSum2 = NullSafeAddition.plusDouble(sum2Source.getUnsafe(destination), sum2.doubleValue());
sumSource.set(destination, newSum);
sum2Source.set(destination, newSum2);
if (forceNanResult || nonNullCount <= 1) {
resultColumn.set(destination, Double.NaN);
} else {
// If the sum or sumSquared has reached +/-Infinity, we are stuck with NaN forever.
if (Double.isInfinite(newSum) || Double.isInfinite(newSum2)) {
resultColumn.set(destination, Double.NaN);
return true;
}
final double variance = computeVariance(nonNullCount, newSum, newSum2);
resultColumn.set(destination, std ? Math.sqrt(variance) : variance);
}
return true;
} else if (forceNanResult || (nonNullCounter.getCountUnsafe(destination) <= 1)) {
resultColumn.set(destination, Double.NaN);
return true;
} else {
return false;
}
}
private static double computeVariance(long nonNullCount, double newSum, double newSum2) {
// Perform the calculation in a way that minimizes the impact of FP error.
final double eps = Math.ulp(newSum2);
final double vs2bar = newSum * (newSum / nonNullCount);
final double delta = newSum2 - vs2bar;
final double rel_eps = delta / eps;
// Return zero when the variance is leq the FP error or when variance becomes negative
final double variance = Math.abs(rel_eps) > 1.0 ? delta / (nonNullCount - 1) : 0.0;
return Math.max(variance, 0.0);
}
private boolean removeChunk(DoubleChunk extends Values> values, long destination, int chunkStart, int chunkSize) {
final MutableDouble sum2 = new MutableDouble();
final MutableInt chunkNormalCount = new MutableInt();
final MutableInt chunkNanCount = new MutableInt();
final MutableInt chunkInfinityCount = new MutableInt();
final MutableInt chunkMinusInfinity = new MutableInt();
final double sum = SumDoubleChunk.sum2DoubleChunk(values, chunkStart, chunkSize, chunkNormalCount, chunkNanCount, chunkInfinityCount, chunkMinusInfinity, sum2);
if (chunkNormalCount.intValue() == 0 && chunkNanCount.intValue() == 0 && chunkInfinityCount.intValue() == 0 && chunkMinusInfinity.intValue() == 0) {
return false;
}
final long totalPositiveInfinities = updatePositiveInfinityCount(destination, -chunkInfinityCount.intValue());
final long totalNegativeInfinities = updateNegativeInfinityCount(destination, -chunkMinusInfinity.intValue());
final long totalNanCount = updateNanCount(destination, -chunkNanCount.intValue());
final boolean forceNanResult = totalNegativeInfinities > 0 || totalPositiveInfinities > 0 || totalNanCount > 0;
final long totalNormalCount = nonNullCounter.addNonNullUnsafe(destination, -chunkNormalCount.intValue());
final double newSum, newSum2;
if (chunkNormalCount.intValue() > 0) {
if (totalNormalCount > 0) {
newSum = NullSafeAddition.plusDouble(sumSource.getUnsafe(destination), -sum);
newSum2 = NullSafeAddition.plusDouble(sum2Source.getUnsafe(destination), -sum2.doubleValue());
} else {
newSum = newSum2 = 0;
}
sumSource.set(destination, newSum);
sum2Source.set(destination, newSum2);
} else if (totalNormalCount <= 1 || forceNanResult) {
resultColumn.set(destination, Double.NaN);
return true;
} else {
newSum = sumSource.getUnsafe(destination);
newSum2 = sum2Source.getUnsafe(destination);
}
if (totalNormalCount <= 1) {
resultColumn.set(destination, Double.NaN);
return true;
}
// If the sum has reach +/-Infinity, we are stuck with NaN forever.
if (Double.isInfinite(newSum) || Double.isInfinite(newSum2)) {
resultColumn.set(destination, Double.NaN);
return true;
}
// Perform the calculation in a way that minimizes the impact of FP error.
final double variance = computeVariance(totalNormalCount, newSum, newSum2);
resultColumn.set(destination, std ? Math.sqrt(variance) : variance);
return true;
}
@Override
public void ensureCapacity(long tableSize) {
resultColumn.ensureCapacity(tableSize);
nonNullCounter.ensureCapacity(tableSize);
sumSource.ensureCapacity(tableSize);
sum2Source.ensureCapacity(tableSize);
ensureNonNormalCapacity(tableSize);
}
@Override
public Map> getResultColumns() {
if (exposeInternalColumns) {
final Map> results = new LinkedHashMap<>();
results.put(name, resultColumn);
results.put(name + ROLLUP_RUNNING_SUM_COLUMN_ID + ROLLUP_COLUMN_SUFFIX, sumSource);
results.put(name + ROLLUP_RUNNING_SUM2_COLUMN_ID + ROLLUP_COLUMN_SUFFIX, sum2Source);
results.put(name + ROLLUP_NONNULL_COUNT_COLUMN_ID + ROLLUP_COLUMN_SUFFIX, nonNullCounter.getColumnSource());
results.putAll(fpInternalColumnSources(name));
return results;
} else {
return Collections.singletonMap(name, resultColumn);
}
}
@Override
public void startTrackingPrevValues() {
resultColumn.startTrackingPrevValues();
if (exposeInternalColumns) {
sumSource.startTrackingPrevValues();
sum2Source.startTrackingPrevValues();
nonNullCounter.startTrackingPrevValues();
startTrackingPrevFpCounterValues();
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy