io.deephaven.engine.table.impl.updateby.emstd.DoubleEmStdOperator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of deephaven-engine-table Show documentation
Show all versions of deephaven-engine-table Show documentation
Engine Table: Implementation and closely-coupled utilities
/*
* ---------------------------------------------------------------------------------------------------------------------
* AUTO-GENERATED CLASS - DO NOT EDIT MANUALLY - for any changes edit CharEmStdOperator and regenerate
* ---------------------------------------------------------------------------------------------------------------------
*/
/*
* ---------------------------------------------------------------------------------------------------------------------
* AUTO-GENERATED CLASS - DO NOT EDIT MANUALLY - for any changes edit FloatEmStdOperator and regenerate
* ---------------------------------------------------------------------------------------------------------------------
*/
package io.deephaven.engine.table.impl.updateby.emstd;
import io.deephaven.api.updateby.BadDataBehavior;
import io.deephaven.api.updateby.OperationControl;
import io.deephaven.chunk.Chunk;
import io.deephaven.chunk.LongChunk;
import io.deephaven.chunk.DoubleChunk;
import io.deephaven.chunk.attributes.Values;
import io.deephaven.engine.rowset.RowSequence;
import io.deephaven.engine.table.ColumnSource;
import io.deephaven.engine.table.impl.MatchPair;
import io.deephaven.engine.table.impl.updateby.UpdateByOperator;
import io.deephaven.engine.table.impl.util.RowRedirection;
import org.jetbrains.annotations.NotNull;
import org.jetbrains.annotations.Nullable;
import static io.deephaven.util.QueryConstants.*;
/***
* Compute an exponential moving standard deviation for a double column source. The output is expressed as a double
* value and is computed using the following formula:
*
* variance = alpha * (prevVariance + (1 - alpha) * (x - prevEma)^2)
*
* This function is described in the following document:
*
* "Incremental calculation of weighted mean and variance"
* Tony Finch, University of Cambridge Computing Service (February 2009)
* https://web.archive.org/web/20181222175223/http://people.ds.cam.ac.uk/fanf2/hermes/doc/antiforgery/stats.pdf
*
* NOTE: `alpha` as used in the paper has been replaced with `1 - alpha` per the convention adopted by Deephaven.
*/
public class DoubleEmStdOperator extends BasePrimitiveEmStdOperator {
public final ColumnSource> valueSource;
protected class Context extends BasePrimitiveEmStdOperator.Context {
public DoubleChunk extends Values> doubleValueChunk;
protected Context(final int affectedChunkSize, final int influencerChunkSize) {
super(affectedChunkSize);
}
@Override
public void accumulateCumulative(@NotNull RowSequence inputKeys,
Chunk extends Values>[] valueChunkArr,
LongChunk extends Values> tsChunk,
int len) {
setValueChunks(valueChunkArr);
// chunk processing
if (timestampColumnName == null) {
// compute with ticks
for (int ii = 0; ii < len; ii++) {
// read the value from the values chunk
final double input = doubleValueChunk.get(ii);
final boolean isNull = input == NULL_DOUBLE;
final boolean isNan = Double.isNaN(input);
if (isNull || isNan) {
handleBadData(this, isNull, isNan);
} else {
if (curEma == NULL_DOUBLE) {
curEma = input;
curVariance = 0.0;
curVal = Double.NaN;
} else {
// incremental variance = alpha * (prevVariance + (1 - alpha) * (x - prevEma)^2)
curVariance = opAlpha * (curVariance + opOneMinusAlpha * Math.pow(input - curEma, 2.0));
final double decayedEmaVal = curEma * opAlpha;
curEma = decayedEmaVal + (opOneMinusAlpha * input);
curVal = Math.sqrt(curVariance);
}
}
outputValues.set(ii, curVal);
if (emaValues != null) {
emaValues.set(ii, curEma);
}
}
} else {
// compute with time
for (int ii = 0; ii < len; ii++) {
// read the value from the values chunk
final double input = doubleValueChunk.get(ii);
final long timestamp = tsChunk.get(ii);
//noinspection ConstantConditions
final boolean isNull = input == NULL_DOUBLE;
final boolean isNan = Double.isNaN(input);
final boolean isNullTime = timestamp == NULL_LONG;
// Handle bad data first
if (isNull || isNan) {
handleBadData(this, isNull, isNan);
} else if (isNullTime) {
// no change to curVal and lastStamp
} else if (curEma == NULL_DOUBLE) {
curEma = input;
curVariance = 0.0;
curVal = Double.NaN;
lastStamp = timestamp;
} else {
final long dt = timestamp - lastStamp;
if (dt != lastDt) {
// Alpha is dynamic based on time, but only recalculated when needed
alpha = Math.exp(-dt / reverseWindowScaleUnits);
oneMinusAlpha = 1.0 - alpha;
lastDt = dt;
}
// incremental variance = alpha * (prevVariance + (1 - alpha) * (x - prevEma)^2)
curVariance = alpha * (curVariance + oneMinusAlpha * Math.pow(input - curEma, 2.0));
final double decayedEmaVal = curEma * alpha;
curEma = decayedEmaVal + (oneMinusAlpha * input);
curVal = Math.sqrt(curVariance);
lastStamp = timestamp;
}
outputValues.set(ii, curVal);
if (emaValues != null) {
emaValues.set(ii, curEma);
}
}
}
// chunk output to column
writeToOutputColumn(inputKeys);
}
@Override
public void writeToOutputColumn(@NotNull final RowSequence inputKeys) {
outputSource.fillFromChunk(outputFillContext, outputValues, inputKeys);
if (emaValues != null) {
emaSource.fillFromChunk(emaFillContext, emaValues, inputKeys);
}
}
@Override
public void setValueChunks(@NotNull final Chunk extends Values>[] valuesChunks) {
doubleValueChunk = valuesChunks[0].asDoubleChunk();
}
@Override
public boolean isValueValid(long atKey) {
final double value = valueSource.getDouble(atKey);
if (value == NULL_DOUBLE) {
return false;
}
return !Double.isNaN(value) || control.onNanValueOrDefault() != BadDataBehavior.SKIP;
}
}
/**
* An operator that computes an exponential moving standard deviation from a double column using an exponential
* decay function.
*
* @param pair the {@link MatchPair} that defines the input/output for this operation
* @param affectingColumns the names of the columns that affect this ema
* @param rowRedirection the {@link RowRedirection} to use for dense output sources
* @param control defines how to handle {@code null} input values.
* @param timestampColumnName the name of the column containing timestamps for time-based calcuations
* @param windowScaleUnits the smoothing window for the EMA. If no {@code timestampColumnName} is provided, this is measured in ticks, otherwise it is measured in nanoseconds
* @param valueSource a reference to the input column source for this operation
*/
public DoubleEmStdOperator(@NotNull final MatchPair pair,
@NotNull final String[] affectingColumns,
@Nullable final RowRedirection rowRedirection,
@NotNull final OperationControl control,
@Nullable final String timestampColumnName,
final double windowScaleUnits,
final ColumnSource> valueSource,
final boolean sourceRefreshing
// region extra-constructor-args
// endregion extra-constructor-args
) {
super(pair, affectingColumns, rowRedirection, control, timestampColumnName, windowScaleUnits, sourceRefreshing);
this.valueSource = valueSource;
// region constructor
// endregion constructor
}
@NotNull
@Override
public UpdateByOperator.Context makeUpdateContext(final int affectedChunkSize, final int influencerChunkSize) {
return new Context(affectedChunkSize, influencerChunkSize);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy