All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.delta.flink.source.internal.builder.RowBuilderUtils Maven / Gradle / Ivy

There is a newer version: 3.2.1
Show newest version
package io.delta.flink.source.internal.builder;

import java.util.List;

import io.delta.flink.source.internal.state.DeltaSourceSplit;
import org.apache.flink.connector.file.table.PartitionFieldExtractor;
import org.apache.flink.core.fs.Path;
import org.apache.flink.formats.parquet.ParquetColumnarRowInputFormat;
import org.apache.flink.formats.parquet.vector.ColumnBatchFactory;
import org.apache.flink.table.data.columnar.vector.ColumnVector;
import org.apache.flink.table.data.columnar.vector.VectorizedColumnBatch;
import org.apache.flink.table.types.logical.RowType;
import static org.apache.flink.formats.parquet.vector.ParquetSplitReaderUtil.createVectorFromConstant;

/**
 * A utility class for Row format builder.
 */
public final class RowBuilderUtils {

    private RowBuilderUtils() {

    }

    /**
     * Create a partitioned {@link ParquetColumnarRowInputFormat}, the partition columns can be
     * generated by {@link Path}.
     */
    public static  ColumnBatchFactory
        createPartitionedColumnFactory(
            RowType producedRowType,
            List projectedNames,
            List partitionKeys,
            PartitionFieldExtractor extractor,
            int batchSize) {

        // This method is copied and adjusted from Flink's
        // ParquetColumnarRowInputFormat::createPartitionedFormat factory method.
        // The changes made to the original method were about making this method return an
        // instance of ColumnBatchFactory object rather than ParquetColumnarRowInputFormat like
        // the original method is doing.
        // Thanks to this, we can still have our own implementation of Delta's DeltaBulkFormat
        // and hide Flink types and API from the end user. This will be helpful in the future
        // when we will expose DeltaBulkFormat to the end user.
        return (SplitT split, ColumnVector[] parquetVectors) -> {
            // create and initialize the row batch
            ColumnVector[] vectors = new ColumnVector[producedRowType.getFieldCount()];
            for (int i = 0; i < vectors.length; i++) {
                RowType.RowField field = producedRowType.getFields().get(i);

                vectors[i] =
                        partitionKeys.contains(field.getName())
                        ? createVectorFromConstant(
                                field.getType(),
                                extractor.extract(split, field.getName(), field.getType()),
                                batchSize)
                        : parquetVectors[projectedNames.indexOf(field.getName())];
            }
            return new VectorizedColumnBatch(vectors);
        };
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy