io.druid.query.aggregation.histogram.sql.QuantileSqlAggregator Maven / Gradle / Ivy
/*
* Licensed to Metamarkets Group Inc. (Metamarkets) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. Metamarkets licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package io.druid.query.aggregation.histogram.sql;
import com.google.common.collect.ImmutableList;
import io.druid.java.util.common.StringUtils;
import io.druid.query.aggregation.AggregatorFactory;
import io.druid.query.aggregation.histogram.ApproximateHistogram;
import io.druid.query.aggregation.histogram.ApproximateHistogramAggregatorFactory;
import io.druid.query.aggregation.histogram.ApproximateHistogramFoldingAggregatorFactory;
import io.druid.query.aggregation.histogram.QuantilePostAggregator;
import io.druid.segment.VirtualColumn;
import io.druid.segment.column.ValueType;
import io.druid.segment.virtual.ExpressionVirtualColumn;
import io.druid.sql.calcite.aggregation.Aggregation;
import io.druid.sql.calcite.aggregation.SqlAggregator;
import io.druid.sql.calcite.expression.DruidExpression;
import io.druid.sql.calcite.expression.Expressions;
import io.druid.sql.calcite.planner.PlannerContext;
import io.druid.sql.calcite.table.RowSignature;
import org.apache.calcite.rel.core.AggregateCall;
import org.apache.calcite.rel.core.Project;
import org.apache.calcite.rex.RexBuilder;
import org.apache.calcite.rex.RexLiteral;
import org.apache.calcite.rex.RexNode;
import org.apache.calcite.sql.SqlAggFunction;
import org.apache.calcite.sql.SqlFunctionCategory;
import org.apache.calcite.sql.SqlKind;
import org.apache.calcite.sql.type.OperandTypes;
import org.apache.calcite.sql.type.ReturnTypes;
import org.apache.calcite.sql.type.SqlTypeFamily;
import org.apache.calcite.sql.type.SqlTypeName;
import java.util.ArrayList;
import java.util.List;
public class QuantileSqlAggregator implements SqlAggregator
{
private static final SqlAggFunction FUNCTION_INSTANCE = new QuantileSqlAggFunction();
private static final String NAME = "APPROX_QUANTILE";
@Override
public SqlAggFunction calciteFunction()
{
return FUNCTION_INSTANCE;
}
@Override
public Aggregation toDruidAggregation(
final PlannerContext plannerContext,
final RowSignature rowSignature,
final RexBuilder rexBuilder,
final String name,
final AggregateCall aggregateCall,
final Project project,
final List existingAggregations
)
{
final DruidExpression input = Expressions.toDruidExpression(
plannerContext,
rowSignature,
Expressions.fromFieldAccess(
rowSignature,
project,
aggregateCall.getArgList().get(0)
)
);
if (input == null) {
return null;
}
final AggregatorFactory aggregatorFactory;
final String histogramName = StringUtils.format("%s:agg", name);
final RexNode probabilityArg = Expressions.fromFieldAccess(
rowSignature,
project,
aggregateCall.getArgList().get(1)
);
if (!probabilityArg.isA(SqlKind.LITERAL)) {
// Probability must be a literal in order to plan.
return null;
}
final float probability = ((Number) RexLiteral.value(probabilityArg)).floatValue();
final int resolution;
if (aggregateCall.getArgList().size() >= 3) {
final RexNode resolutionArg = Expressions.fromFieldAccess(
rowSignature,
project,
aggregateCall.getArgList().get(2)
);
if (!resolutionArg.isA(SqlKind.LITERAL)) {
// Resolution must be a literal in order to plan.
return null;
}
resolution = ((Number) RexLiteral.value(resolutionArg)).intValue();
} else {
resolution = ApproximateHistogram.DEFAULT_HISTOGRAM_SIZE;
}
final int numBuckets = ApproximateHistogram.DEFAULT_BUCKET_SIZE;
final float lowerLimit = Float.NEGATIVE_INFINITY;
final float upperLimit = Float.POSITIVE_INFINITY;
// Look for existing matching aggregatorFactory.
for (final Aggregation existing : existingAggregations) {
for (AggregatorFactory factory : existing.getAggregatorFactories()) {
if (factory instanceof ApproximateHistogramAggregatorFactory) {
final ApproximateHistogramAggregatorFactory theFactory = (ApproximateHistogramAggregatorFactory) factory;
// Check input for equivalence.
final boolean inputMatches;
final VirtualColumn virtualInput = existing.getVirtualColumns()
.stream()
.filter(
virtualColumn ->
virtualColumn.getOutputName()
.equals(theFactory.getFieldName())
)
.findFirst()
.orElse(null);
if (virtualInput == null) {
inputMatches = input.isDirectColumnAccess()
&& input.getDirectColumn().equals(theFactory.getFieldName());
} else {
inputMatches = ((ExpressionVirtualColumn) virtualInput).getExpression()
.equals(input.getExpression());
}
final boolean matches = inputMatches
&& theFactory.getResolution() == resolution
&& theFactory.getNumBuckets() == numBuckets
&& theFactory.getLowerLimit() == lowerLimit
&& theFactory.getUpperLimit() == upperLimit;
if (matches) {
// Found existing one. Use this.
return Aggregation.create(
ImmutableList.of(),
new QuantilePostAggregator(name, factory.getName(), probability)
);
}
}
}
}
// No existing match found. Create a new one.
final List virtualColumns = new ArrayList<>();
if (input.isDirectColumnAccess()) {
if (rowSignature.getColumnType(input.getDirectColumn()) == ValueType.COMPLEX) {
aggregatorFactory = new ApproximateHistogramFoldingAggregatorFactory(
histogramName,
input.getDirectColumn(),
resolution,
numBuckets,
lowerLimit,
upperLimit
);
} else {
aggregatorFactory = new ApproximateHistogramAggregatorFactory(
histogramName,
input.getDirectColumn(),
resolution,
numBuckets,
lowerLimit,
upperLimit
);
}
} else {
final ExpressionVirtualColumn virtualColumn = input.toVirtualColumn(
StringUtils.format("%s:v", name),
ValueType.FLOAT,
plannerContext.getExprMacroTable()
);
virtualColumns.add(virtualColumn);
aggregatorFactory = new ApproximateHistogramAggregatorFactory(
histogramName,
virtualColumn.getOutputName(),
resolution,
numBuckets,
lowerLimit,
upperLimit
);
}
return Aggregation.create(
virtualColumns,
ImmutableList.of(aggregatorFactory),
new QuantilePostAggregator(name, histogramName, probability)
);
}
private static class QuantileSqlAggFunction extends SqlAggFunction
{
private static final String SIGNATURE1 = "'" + NAME + "(column, probability)'\n";
private static final String SIGNATURE2 = "'" + NAME + "(column, probability, resolution)'\n";
QuantileSqlAggFunction()
{
super(
NAME,
null,
SqlKind.OTHER_FUNCTION,
ReturnTypes.explicit(SqlTypeName.DOUBLE),
null,
OperandTypes.or(
OperandTypes.and(
OperandTypes.sequence(SIGNATURE1, OperandTypes.ANY, OperandTypes.LITERAL),
OperandTypes.family(SqlTypeFamily.ANY, SqlTypeFamily.NUMERIC)
),
OperandTypes.and(
OperandTypes.sequence(SIGNATURE2, OperandTypes.ANY, OperandTypes.LITERAL, OperandTypes.LITERAL),
OperandTypes.family(SqlTypeFamily.ANY, SqlTypeFamily.NUMERIC, SqlTypeFamily.EXACT_NUMERIC)
)
),
SqlFunctionCategory.NUMERIC,
false,
false
);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy