io.fair_acc.sample.math.GaussianFitSample Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of samples Show documentation
Show all versions of samples Show documentation
Small sample applications to showcase the features of the chart-fx library.
The newest version!
package io.fair_acc.sample.math;
import java.util.Random;
import javafx.application.Application;
import javafx.scene.Node;
import javafx.stage.Stage;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import io.fair_acc.dataset.DataSet;
import io.fair_acc.dataset.spi.DefaultDataSet;
import io.fair_acc.dataset.spi.DefaultErrorDataSet;
import io.fair_acc.math.MathBase;
import io.fair_acc.math.fitter.NonLinearRegressionFitter;
import io.fair_acc.math.functions.AbstractFunction1D;
import io.fair_acc.sample.chart.ChartSample;
import io.fair_acc.sample.math.utils.DemoChart;
/**
* example illustrating fitting of a Gaussian Distribution
*
* @author rstein
*/
public class GaussianFitSample extends ChartSample {
protected static final Random RANDOM = new Random(System.currentTimeMillis());
private static final Logger LOGGER = LoggerFactory.getLogger(GaussianFitSample.class);
private static final int MAX_POINTS = 101;
private DataSet fmodel;
private DataSet fdataOrig;
private DataSet fdataFitted;
@Override
public Node getChartPanel(Stage stage) {
initData();
final DemoChart chart = new DemoChart();
chart.getRenderer(0).getDatasets().addAll(fmodel, fdataOrig, fdataFitted);
return chart;
}
private void initData() {
// user specific fitting function, here: normalised Gaussian Function
// y := scale*1/sqrt(2*Pi*sigma^2)*exp(-0.5*(x-mu)^2/sigma^2)
// ... MyGaussianFunction(name, double[]{mu, sigma, scale})
final MyGaussianFunction func = new MyGaussianFunction("gauss1", new double[] { -3.0, 1.0, 10.0 });
LOGGER.atInfo().log("before fit");
func.printParameters();
double[] xValues = new double[MAX_POINTS];
double[] yValues = new double[MAX_POINTS];
double[] yModel = new double[MAX_POINTS];
double[] yErrors = new double[MAX_POINTS];
for (int i = 0; i < xValues.length; i++) {
final double error = 0.5 * RANDOM.nextGaussian();
xValues[i] = (i - xValues.length / 2.0) * 30.0 / MAX_POINTS; // equidistant
// sampling
final double value = func.getValue(xValues[i]);
// add some slope and offset to make the fit a bit more tricky
// remember: in this example, the slope is not part of the fitting
// check whether fit converged via chi^2
// value += xValues[i]*0.1+0.5;
// may converge depending on parameter values
// if you need to fit this -> add a slope, offset parameter to your
// Gaussian function
yModel[i] = value;
yValues[i] = value + error;
yErrors[i] = Math.abs(error);
}
final NonLinearRegressionFitter fitter = new NonLinearRegressionFitter(xValues, yValues, yErrors);
// initial estimates
double[] start = new double[3];
start[0] = 0.0; // initial estimate of mu
start[1] = 1.0; // initial estimate of sigma
start[2] = 0.6; // initial estimate of the scale
// initial step sizes
double[] step = new double[3];
step[0] = 0.6; // initial step size for mu
step[1] = 0.05; // initial step size for sigma
step[2] = 0.1; // initial step size for scale
fitter.simplex(func, start, step);
final double[] fittedParameter = fitter.getBestEstimates();
final double[] fittedParameterError = fitter.getBestEstimatesErrors();
func.setParameterValues(fittedParameter);
for (int i = 0; i < func.getParameterCount(); i++) {
final double value = fittedParameter[i];
final double error = fittedParameterError[i];
func.setParameterRange(i, value - error, value + error);
}
final double[] yPredicted = func.getValues(xValues);
final double[] yPredictedError = new double[yPredicted.length];
LOGGER.atInfo().log("after fit");
func.printParameters();
LOGGER.atInfo().log("fit results chi^2 =" + fitter.getChiSquare() + ":");
for (int i = 0; i < 3; i++) {
LOGGER.atInfo().addArgument(func.getParameterName(i)).addArgument(start[i]).addArgument(fittedParameter[i]).addArgument(fittedParameterError[i]).log("fitted-parameter '{}' = {} -> {} +- {}");
}
fmodel = new DefaultDataSet("design model", xValues, yModel, xValues.length, true);
fdataOrig = new DefaultErrorDataSet("data seed with errors", xValues, yValues, yErrors, yErrors, xValues.length,
true);
fdataFitted = new DefaultErrorDataSet("fitted model", xValues, yPredicted, yPredictedError, yPredictedError,
xValues.length, true);
// plot fitting results
// for (int i = 0; i < func.getParameterCount(); i++) {
// LOGGER.atInfo().addArgument(func.getParameterName(i)) //
// .addArgument(func.getParameterValue(i)) //
// .addArgument(0.5 * (func.getParameterRangeMaximum(i) - func.getParameterRangeMinimum(i))) //
// .log("fitted parameter '{}': {} +- {}"); //
// }
}
public static void main(final String[] args) {
Application.launch(args);
}
/**
* example fitting function y = scale/(sqrt(2*pi*sigma)*exp(- 0.5*(x-mu)^2/sigma^2)
*/
protected static class MyGaussianFunction extends AbstractFunction1D {
public MyGaussianFunction(final String name, final double[] parameter) {
super(name, new double[3]);
// declare parameter names
this.setParameterName(0, "mu");
this.setParameterName(1, "sigma");
this.setParameterName(2, "scale");
if (parameter == null) {
// set some default values
setParameterValue(0, 0.0); // mu
setParameterValue(0, 1.0); // sigma
setParameterValue(0, 1.0); // scale
return;
}
// assign default values
final int maxIndex = MathBase.min(parameter.length, this.getParameterCount());
for (int i = 0; i < maxIndex; i++) {
setParameterValue(i, parameter[i]);
}
}
@Override
public double getValue(final double x) {
final double mu = fparameter[0];
final double sigma = fparameter[1];
final double scale = fparameter[2];
return scale / (Math.sqrt(MathBase.TWO_PI) * sigma) * Math.exp(-0.5 * Math.pow((x - mu) / sigma, 2));
}
}
}