All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.compress.archivers.zip.ExplodingInputStream Maven / Gradle / Ivy

Go to download

This artifact contains the same classes as ${modularized.groupId}%${modularized.artifactId}%${modularized.version} but also a module-info.class

There is a newer version: 1.21.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package org.apache.commons.compress.archivers.zip;

import org.apache.commons.compress.utils.CountingInputStream;
import org.apache.commons.compress.utils.InputStreamStatistics;

import java.io.IOException;
import java.io.InputStream;

/**
 * The implode compression method was added to PKZIP 1.01 released in 1989.
 * It was then dropped from PKZIP 2.0 released in 1993 in favor of the deflate
 * method.
 * 

* The algorithm is described in the ZIP File Format Specification. * * @see ZIP File Format Specification * * @author Emmanuel Bourg * @since 1.7 */ class ExplodingInputStream extends InputStream implements InputStreamStatistics { /** The underlying stream containing the compressed data */ private final InputStream in; /** The stream of bits read from the input stream */ private BitStream bits; /** The size of the sliding dictionary (4K or 8K) */ private final int dictionarySize; /** The number of Shannon-Fano trees (2 or 3) */ private final int numberOfTrees; private final int minimumMatchLength; /** The binary tree containing the 256 encoded literals (null when only two trees are used) */ private BinaryTree literalTree; /** The binary tree containing the 64 encoded lengths */ private BinaryTree lengthTree; /** The binary tree containing the 64 encoded distances */ private BinaryTree distanceTree; /** Output buffer holding the decompressed data */ private final CircularBuffer buffer = new CircularBuffer(32 * 1024); private long uncompressedCount = 0; private long treeSizes = 0; /** * Create a new stream decompressing the content of the specified stream * using the explode algorithm. * * @param dictionarySize the size of the sliding dictionary (4096 or 8192) * @param numberOfTrees the number of trees (2 or 3) * @param in the compressed data stream */ public ExplodingInputStream(final int dictionarySize, final int numberOfTrees, final InputStream in) { if (dictionarySize != 4096 && dictionarySize != 8192) { throw new IllegalArgumentException("The dictionary size must be 4096 or 8192"); } if (numberOfTrees != 2 && numberOfTrees != 3) { throw new IllegalArgumentException("The number of trees must be 2 or 3"); } this.dictionarySize = dictionarySize; this.numberOfTrees = numberOfTrees; this.minimumMatchLength = numberOfTrees; this.in = in; } /** * Reads the encoded binary trees and prepares the bit stream. * * @throws IOException */ private void init() throws IOException { if (bits == null) { try (CountingInputStream i = new CountingInputStream(in) { @Override public void close() { // we do not want to close in } }) { if (numberOfTrees == 3) { literalTree = BinaryTree.decode(i, 256); } lengthTree = BinaryTree.decode(i, 64); distanceTree = BinaryTree.decode(i, 64); treeSizes += i.getBytesRead(); } bits = new BitStream(in); } } @Override public int read() throws IOException { if (!buffer.available()) { fillBuffer(); } final int ret = buffer.get(); if (ret > -1) { uncompressedCount++; } return ret; } /** * @since 1.17 */ @Override public long getCompressedCount() { return bits.getBytesRead() + treeSizes; } /** * @since 1.17 */ @Override public long getUncompressedCount() { return uncompressedCount; } /** * @since 1.17 */ @Override public void close() throws IOException { in.close(); } /** * Fill the sliding dictionary with more data. * @throws IOException */ private void fillBuffer() throws IOException { init(); final int bit = bits.nextBit(); if (bit == -1) { // EOF return; } else if (bit == 1) { // literal value int literal; if (literalTree != null) { literal = literalTree.read(bits); } else { literal = bits.nextByte(); } if (literal == -1) { // end of stream reached, nothing left to decode return; } buffer.put(literal); } else { // back reference final int distanceLowSize = dictionarySize == 4096 ? 6 : 7; final int distanceLow = (int) bits.nextBits(distanceLowSize); final int distanceHigh = distanceTree.read(bits); if (distanceHigh == -1 && distanceLow <= 0) { // end of stream reached, nothing left to decode return; } final int distance = distanceHigh << distanceLowSize | distanceLow; int length = lengthTree.read(bits); if (length == 63) { final long nextByte = bits.nextBits(8); if (nextByte == -1) { // EOF return; } length += nextByte; } length += minimumMatchLength; buffer.copy(distance + 1, length); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy