All Downloads are FREE. Search and download functionalities are using the official Maven repository.

zhao.algorithmMagic.algorithm.classificationAlgorithm.SampleClassification Maven / Gradle / Ivy

There is a newer version: 1.42
Show newest version
package zhao.algorithmMagic.algorithm.classificationAlgorithm;

import zhao.algorithmMagic.operands.matrix.DoubleMatrix;
import zhao.algorithmMagic.operands.matrix.IntegerMatrix;
import zhao.algorithmMagic.operands.vector.DoubleVector;
import zhao.algorithmMagic.operands.vector.IntegerVector;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;

/**
 * 样本分类计算组件的统一抽象接口,其中包含通过类别的标准来确定所有待分类的特征类别。
 * 

* The unified abstract interface of the sample classification calculation component, which includes the determination of all feature categories to be classified through the category criteria. * * @author zhao */ public interface SampleClassification { /** * 计算一个矩阵中所有行或列的数据类别,并将计算之后的数据类别样本返回出去。 *

* Calculate the data categories of all rows or columns in a matrix, and return the calculated data category samples. * * @param data 需要被计算的特征数据组成的矩阵。 *

* Matrix composed of characteristic data to be calculated. * @param categorySample 本次类别计算的类别样本,用于区别各类数据样本,其中的key就是类别,value就是数据特征向量序列,例如: * {"person", [1,2,3,4,5]},{"insect", [3, 2, 3, 4, 5]} *

* The category sample of this category calculation is used to distinguish various data samples. The key is the category, and the value is the data feature vector sequence, for example: * {"person", [1,2,3,4,5]},{"insect", [3, 2, 3, 4, 5]} * @return 按照指定类别进行分类的数据,例如: * {"person", ["tom的特征向量", "zhao的特征向量"], "insect", ["蜘蛛的特征向量", "蜗牛的特征向量"]} *

* Data classified according to the specified category, for example: * {"person", ["Tom's feature vector", "Zhao's feature vector"], "insert", ["spider's feature vector", "snail's feature vector"]} */ HashMap> classification(double[][] data, Map categorySample); /** * 计算一个矩阵中所有行或列的数据类别,并将计算之后的数据类别样本返回出去。 *

* Calculate the data categories of all rows or columns in a matrix, and return the calculated data category samples. * * @param data 需要被计算的特征数据组成的矩阵。 *

* Matrix composed of characteristic data to be calculated. * @param categorySample 本次类别计算的类别样本,用于区别各类数据样本,其中的key就是类别,value就是数据特征向量序列,例如: * {"person", [1,2,3,4,5]},{"insect", [3, 2, 3, 4, 5]} *

* The category sample of this category calculation is used to distinguish various data samples. The key is the category, and the value is the data feature vector sequence, for example: * {"person", [1,2,3,4,5]},{"insect", [3, 2, 3, 4, 5]} * @return 按照指定类别进行分类的数据,例如: * {"person", ["tom的特征向量", "zhao的特征向量"], "insect", ["蜘蛛的特征向量", "蜗牛的特征向量"]} *

* Data classified according to the specified category, for example: * {"person", ["Tom's feature vector", "Zhao's feature vector"], "insert", ["spider's feature vector", "snail's feature vector"]} */ HashMap> classification(int[][] data, Map categorySample); /** * 计算一个矩阵中所有行或列的数据类别,并将计算之后的数据类别样本返回出去。 *

* Calculate the data categories of all rows or columns in a matrix, and return the calculated data category samples. * * @param data 需要被计算的特征数据组成的矩阵。 *

* Matrix composed of characteristic data to be calculated. * @param categorySample 本次类别计算的类别样本,用于区别各类数据样本,其中的key就是类别,value就是数据特征向量序列,例如: * {"person", [1,2,3,4,5]},{"insect", [3, 2, 3, 4, 5]} *

* The category sample of this category calculation is used to distinguish various data samples. The key is the category, and the value is the data feature vector sequence, for example: * {"person", [1,2,3,4,5]},{"insect", [3, 2, 3, 4, 5]} * @return 按照指定类别进行分类的数据,例如: * {"person", ["tom的特征向量", "zhao的特征向量"], "insect", ["蜘蛛的特征向量", "蜗牛的特征向量"]} *

* Data classified according to the specified category, for example: * {"person", ["Tom's feature vector", "Zhao's feature vector"], "insert", ["spider's feature vector", "snail's feature vector"]} */ HashMap> classification(DoubleMatrix data, Map categorySample); /** * 计算一个矩阵中所有行或列的数据类别,并将计算之后的数据类别样本返回出去。 *

* Calculate the data categories of all rows or columns in a matrix, and return the calculated data category samples. * * @param data 需要被计算的特征数据组成的矩阵。 *

* Matrix composed of characteristic data to be calculated. * @param categorySample 本次类别计算的类别样本,用于区别各类数据样本,其中的key就是类别,value就是数据特征向量序列,例如: * {"person", [1,2,3,4,5]},{"insect", [3, 2, 3, 4, 5]} *

* The category sample of this category calculation is used to distinguish various data samples. The key is the category, and the value is the data feature vector sequence, for example: * {"person", [1,2,3,4,5]},{"insect", [3, 2, 3, 4, 5]} * @return 按照指定类别进行分类的数据,例如: * {"person", ["tom的特征向量", "zhao的特征向量"], "insect", ["蜘蛛的特征向量", "蜗牛的特征向量"]} *

* Data classified according to the specified category, for example: * {"person", ["Tom's feature vector", "Zhao's feature vector"], "insert", ["spider's feature vector", "snail's feature vector"]} */ HashMap> classification(IntegerMatrix data, Map categorySample); }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy