All Downloads are FREE. Search and download functionalities are using the official Maven repository.

zhao.algorithmMagic.algorithm.distanceAlgorithm.ManhattanDistance Maven / Gradle / Ivy

There is a newer version: 1.42
Show newest version
package zhao.algorithmMagic.algorithm.distanceAlgorithm;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import zhao.algorithmMagic.algorithm.OperationAlgorithm;
import zhao.algorithmMagic.algorithm.OperationAlgorithmManager;
import zhao.algorithmMagic.exception.TargetNotRealizedException;
import zhao.algorithmMagic.operands.coordinate.*;
import zhao.algorithmMagic.operands.matrix.DoubleMatrix;
import zhao.algorithmMagic.operands.matrix.IntegerMatrix;
import zhao.algorithmMagic.operands.route.DoubleConsanguinityRoute;
import zhao.algorithmMagic.operands.route.DoubleConsanguinityRoute2D;
import zhao.algorithmMagic.operands.route.IntegerConsanguinityRoute;
import zhao.algorithmMagic.operands.route.IntegerConsanguinityRoute2D;
import zhao.algorithmMagic.operands.vector.DoubleVector;
import zhao.algorithmMagic.operands.vector.RangeVector;
import zhao.algorithmMagic.utils.ASClass;
import zhao.algorithmMagic.utils.ASMath;

import java.util.concurrent.atomic.AtomicReference;

/**
 * Java类于 2022/10/10 19:02:36 创建
 * 出租车几何或曼哈顿距离(Manhattan Distance)是由十九世纪的赫尔曼·闵可夫斯基所创词汇 ,是种使用在几何度量空间的几何学用语,用以标明两个点在标准坐标系上的绝对轴距总和。
 * 

* 曼哈顿度量所计算的也是两点之间的距离,但是不同的是距离并不是直线,而是折线 *

* Taxi geometry or Manhattan Distance is a term coined by Hermann Minkowski in the 19th century and is a geometric term used in geometric metric spaces to indicate two points on a standard coordinate system The absolute wheelbase sum of . *

* The Manhattan metric also calculates the distance between two points, but the difference is that the distance is not a straight line, but a polyline * * @param 本类中参与运算的整数坐标的类型,您需要在此类种指定该类可以运算的整形坐标 *

* The type of integer coordinates involved in the operation in this class, you need to specify the integer coordinates that this class can operate on in this class. * @param 本类中参与运算的浮点坐标的类型,您需要在此类种指定该类可以运算的浮点坐标 *

* The type of floating-point coordinates involved in the operation in this class. You need to specify the floating-point coordinates that this class can operate on. * @author LingYuZhao */ public class ManhattanDistance & Coordinate, D extends FloatingPointCoordinates> implements DistanceAlgorithm, RangeDistance { protected final Logger logger; protected final String AlgorithmName; protected ManhattanDistance() { this.AlgorithmName = "ManhattanDistance"; this.logger = LoggerFactory.getLogger("ManhattanDistance"); } protected ManhattanDistance(String algorithmName) { this.AlgorithmName = algorithmName; this.logger = LoggerFactory.getLogger(algorithmName); } /** * 获取到该算法的类对象, * * @param Name 该算法的名称 * @param 该算法用来处理的整形坐标是什么数据类型 *

* What data type is the integer coordinate used by this algorithm? * @param

该算法用来处理的浮点坐标是什么数据类型 * @return 算法类对象 * @throws TargetNotRealizedException 当您传入的算法名称对应的组件不能被成功提取的时候会抛出异常 */ public static & Coordinate, DD extends FloatingPointCoordinates> ManhattanDistance getInstance(String Name) { if (OperationAlgorithmManager.containsAlgorithmName(Name)) { OperationAlgorithm operationAlgorithm = OperationAlgorithmManager.getInstance().get(Name); if (operationAlgorithm instanceof ManhattanDistance) { return ASClass.transform(operationAlgorithm); } else { throw new TargetNotRealizedException("您提取的[" + Name + "]算法被找到了,但是它不属于ManhattanDistance类型,请您为这个算法重新定义一个名称。\n" + "The [" + Name + "] algorithm you extracted has been found, but it does not belong to the ManhattanDistance type. Please redefine a name for this algorithm."); } } else { ManhattanDistance manhattanDistance = new ManhattanDistance<>(Name); OperationAlgorithmManager.getInstance().register(manhattanDistance); return manhattanDistance; } } /** * 获取到坐标点到原点的真实曼哈顿距离 *

* Get the true Manhattan distance from the coordinate point to the origin * * @param iFloatingPointCoordinates 被计算的坐标点 *

* Calculated coordinates * @return 该坐标点到原点的真实兰氏距离 *

* Manhattan distances from the coordinate point to the origin */ public double getTrueDistance(FloatingPointCoordinates iFloatingPointCoordinates) { if (OperationAlgorithmManager.PrintCalculationComponentLog) { logger.info("ⁿ∑₁ (|COORDINATE(n) - 0|)"); } double res = 0; for (double v : iFloatingPointCoordinates.toArray()) { res += ASMath.absoluteValue(v); } return res; } /** * 获取到坐标点到原点的真实曼哈顿距离 *

* Get the true Manhattan distance from the coordinate point to the origin * * @param integerCoordinates 被计算的坐标点 *

* Calculated coordinates * @return 该坐标点到原点的真实兰氏距离 *

* Manhattan distances from the coordinate point to the origin */ public double getTrueDistance(IntegerCoordinates integerCoordinates) { if (OperationAlgorithmManager.PrintCalculationComponentLog) { logger.info("ⁿ∑₁ (|COORDINATE(n) - 0|)"); } double res = 0; for (double v : integerCoordinates.toArray()) { res += ASMath.absoluteValue(v); } return res; } /** * 在多维空间之内,计算两个点之间的曼哈顿距离。 *

* Within a multidimensional space, calculate the Manhattan distance between two points. * * @param floatingPointCoordinate1 多维空间中的第一个坐标点 *

* The first coordinate point in multidimensional space. * @param floatingPointCoordinate2 多维空间中的第二个坐标点 *

* Second coordinate point in multidimensional space. * @return 两个多维坐标点之间的曼哈顿距离。 *

* Manhattan distances between two multidimensional coordinate points. */ public double getTrueDistance(FloatingPointCoordinates floatingPointCoordinate1, FloatingPointCoordinates floatingPointCoordinate2) { double res = 0; if (OperationAlgorithmManager.PrintCalculationComponentLog) { logger.info("ⁿ∑₁( " + floatingPointCoordinate1 + " - " + floatingPointCoordinate2 + ").map(d -> |d|)"); } for (double d : floatingPointCoordinate1.diff(floatingPointCoordinate2.extend()).toArray()) { res += ASMath.absoluteValue(d); } return res; } /** * 在多维空间之内,计算两个点之间的曼哈顿距离。 *

* Within a multidimensional space, calculate the Manhattan distance between two points. * * @param integerCoordinate1 多维空间中的第一个坐标点 *

* The first coordinate point in multidimensional space. * @param integerCoordinate2 多维空间中的第二个坐标点 *

* Second coordinate point in multidimensional space. * @return 两个多维坐标点之间的曼哈顿距离。 *

* Manhattan distances between two multidimensional coordinate points. */ public double getTrueDistance(IntegerCoordinates integerCoordinate1, IntegerCoordinates integerCoordinate2) { int res = 0; if (OperationAlgorithmManager.PrintCalculationComponentLog) { logger.info("ⁿ∑₁( " + integerCoordinate1 + " - " + integerCoordinate2 + ").map(d -> |d|)"); } for (int d : (integerCoordinate1.extend().diff(integerCoordinate2.extend())).toArray()) { res += ASMath.absoluteValue(d); } return res; } /** * @return 该算法组件的名称,也可有是一个识别码,在获取算法的时候您可以通过该名称获取到算法对象 *

* The name of the algorithm component, or an identification code, you can obtain the algorithm object through this name when obtaining the algorithm. */ @Override public String getAlgorithmName() { return AlgorithmName; } /** * 使用一个向量计算真实距离,具体实现请参阅 api node *

* Use a vector to calculate the true distance, see the api node for the specific implementation * * @param doubleVector 被计算的向量 *

* Calculated vector * @return 该向量中始末坐标的曼哈顿距离 *

* 将函数做了一个变换, 使其能够兼容向量的计算, 曼哈顿度量其本身就是始末坐标的差值进行的计算 * The function is transformed to make it compatible with the calculation of vectors. The Manhattan metric itself is the calculation of the difference between the start and end coordinates. */ public double getTrueDistance(DoubleVector doubleVector) { double res = 0; for (double v : doubleVector.toArray()) { res += ASMath.absoluteValue(v); } return res; } /** * 算法模块的初始化方法,在这里您可以进行组件的初始化方法,当初始化成功之后,该算法就可以处于就绪的状态,一般这里就是将自己添加到算法管理类中 *

* The initialization method of the algorithm module, here you can perform the initialization method of the component, when the initialization is successful, the algorithm can be in a ready state, generally here is to add yourself to the algorithm management class * * @return 初始化成功或失败。 *

* Initialization succeeded or failed. */ @Override public boolean init() { if (!OperationAlgorithmManager.containsAlgorithmName(this.getAlgorithmName())) { OperationAlgorithmManager.getInstance().register(this); return true; } else { return false; } } /** * 计算一个路线的起始点与终止点的真实距离。具体的距离实现,需要您查阅算法实现的文档。 *

* Calculates the true distance between the start and end points of a route. * * @param doubleConsanguinityRoute 需要被计算的路线对象 *

* The route object that needs to be calculated * @return ... */ @Override public double getTrueDistance(DoubleConsanguinityRoute doubleConsanguinityRoute) { return getTrueDistance(doubleConsanguinityRoute.getStartingCoordinate().toArray(), doubleConsanguinityRoute.getEndPointCoordinate().toArray()); } /** * 获取两个序列之间的距离 *

* Get the Canberra distance between two sequences (note that there is no length check function here, if you need to use this method, please configure the array length check outside) * * @param doubles1 数组序列1 * @param doubles2 数组序列2 * @return ... */ @Override public double getTrueDistance(double[] doubles1, double[] doubles2) { double[] doubles = new DoubleCoordinateMany(doubles1).diff(new DoubleCoordinateMany(doubles2)).toArray(); if (OperationAlgorithmManager.PrintCalculationComponentLog) { logger.info("ⁿ∑₁|(Xn - Yn)|"); } double res = 0; for (double aDouble : doubles) { res += ASMath.absoluteValue(aDouble); } return res; } /** * 获取两个序列之间的距离 *

* Get the Canberra distance between two sequences (note that there is no length check function here, if you need to use this method, please configure the array length check outside) * * @param ints1 数组序列1 * @param ints2 数组序列2 * @return ... */ @Override public double getTrueDistance(int[] ints1, int[] ints2) { int[] ints = new IntegerCoordinateMany(ints1).diff(new IntegerCoordinateMany(ints2)).toArray(); if (OperationAlgorithmManager.PrintCalculationComponentLog) { logger.info("ⁿ∑₁|(Xn - Yn)|"); } int res = 0; for (int anInt : ints) { res += ASMath.absoluteValue(anInt); } return res; } /** * 计算一个路线的起始点与终止点的真实距离。具体的距离实现,需要您查阅算法实现的文档。 *

* Calculates the true distance between the start and end points of a route. * * @param doubleConsanguinityRoute2D 需要被计算的路线对象 *

* The route object that needs to be calculated * @return ... */ @Override public double getTrueDistance(DoubleConsanguinityRoute2D doubleConsanguinityRoute2D) { return getTrueDistance(doubleConsanguinityRoute2D.getStartingCoordinate().toArray(), doubleConsanguinityRoute2D.getEndPointCoordinate().toArray()); } /** * 计算一个路线的起始点与终止点的真实距离。具体的距离实现,需要您查阅算法实现的文档。 *

* Calculates the true distance between the start and end points of a route. * * @param integerConsanguinityRoute 需要被计算的路线对象 *

* The route object that needs to be calculated * @return ... */ @Override public double getTrueDistance(IntegerConsanguinityRoute integerConsanguinityRoute) { return getTrueDistance(integerConsanguinityRoute.getStartingCoordinate().toArray(), integerConsanguinityRoute.getEndPointCoordinate().toArray()); } /** * 计算一个路线的起始点与终止点的真实距离。具体的距离实现,需要您查阅算法实现的文档。 *

* Calculates the true distance between the start and end points of a route. * * @param integerConsanguinityRoute2D 需要被计算的路线对象 *

* The route object that needs to be calculated * @return ... */ @Override public double getTrueDistance(IntegerConsanguinityRoute2D integerConsanguinityRoute2D) { return getTrueDistance(integerConsanguinityRoute2D.getStartingCoordinate().toArray(), integerConsanguinityRoute2D.getEndPointCoordinate().toArray()); } /** * 计算两个矩阵对象之间的距离度量函数,通过该函数可以实现两个矩阵对象度量系数的计算。 *

* Calculates the distance metric function between two matrix objects, through which the metric coefficients of two matrix objects can be calculated. * * @param integerMatrix1 需要被进行计算的矩阵对象。 *

* The matrix object that needs to be calculated. * @param matrix2 需要被进行计算的矩阵对象。 *

* The matrix object that needs to be calculated. * @return 计算出来的度量结果系数。 *

* The calculated measurement result coefficient. */ @Override public double getTrueDistance(IntegerMatrix integerMatrix1, IntegerMatrix matrix2) { int res = 0; for (int[] ints : integerMatrix1.diff(matrix2)) { for (int anInt : ints) { res += ASMath.absoluteValue(anInt); } } return res; } /** * 计算两个矩阵对象之间的距离度量函数,通过该函数可以实现两个矩阵对象度量系数的计算。 *

* Calculates the distance metric function between two matrix objects, through which the metric coefficients of two matrix objects can be calculated. * * @param matrix1 需要被进行计算的矩阵对象。 *

* The matrix object that needs to be calculated. * @param matrix2 需要被进行计算的矩阵对象。 *

* The matrix object that needs to be calculated. * @return 计算出来的度量结果系数。 *

* The calculated measurement result coefficient. */ @Override public double getTrueDistance(DoubleMatrix matrix1, DoubleMatrix matrix2) { double res = 0; for (double[] ints : matrix1.diff(matrix2)) { for (double anInt : ints) { res += ASMath.absoluteValue(anInt); } } return res; } /** * 计算向量距离原点的距离。 * * @param rangeDistance 需要被计算的向量。 * @return 计算出来的距离结果数值。 */ @Override public double getTrueDistance(RangeVector rangeDistance) { AtomicReference res = new AtomicReference<>((double) 0); rangeDistance.forEach(number -> res.set(res.get() + ASMath.absoluteValue(number.doubleValue()))); return res.get(); } }