no.uib.cipr.matrix.SymmTridiagEVD Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mtj Show documentation
Show all versions of mtj Show documentation
A comprehensive collection of matrix data structures, linear solvers, least squares methods,
eigenvalue, and singular value decompositions.
Forked from: https://github.com/fommil/matrix-toolkits-java
and added support for eigenvalue computation of general matrices
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix;
import com.github.fommil.netlib.LAPACK;
import org.netlib.util.intW;
/**
* Computes eigenvalues of symmetrical, tridiagonal matrices
*/
public class SymmTridiagEVD extends SymmEVD {
/**
* Double work array
*/
private final double[] work;
/**
* Integer work array
*/
private final int[] iwork;
/**
* Range of eigenvalues to compute
*/
private final JobEigRange range;
/**
* Eigenvector supports
*/
private final int[] isuppz;
/**
* Tolerance criteria
*/
private final double abstol;
/**
* Sets up an eigenvalue decomposition for symmetrical, tridiagonal
* matrices. Computes all eigenvalues and eigenvectors, and uses a low
* default tolerance criteria
*
* @param n
* Size of the matrix
*/
public SymmTridiagEVD(int n) {
this(n, true);
}
/**
* Sets up an eigenvalue decomposition for symmetrical, tridiagonal
* matrices. Computes all eigenvalues and eigenvectors
*
* @param n
* Size of the matrix
* @param abstol
* Absolute tolerance criteria
*/
public SymmTridiagEVD(int n, double abstol) {
this(n, true, abstol);
}
/**
* Sets up an eigenvalue decomposition for symmetrical, tridiagonal
* matrices. Uses a low default tolerance criteria
*
* @param n
* Size of the matrix
* @param vectors
* True to compute the eigenvectors, false for just the
* eigenvalues
*/
public SymmTridiagEVD(int n, boolean vectors) {
this(n, vectors, LAPACK.getInstance().dlamch("Safe minimum"));
}
/**
* Sets up an eigenvalue decomposition for symmetrical, tridiagonal matrices
*
* @param n
* Size of the matrix
* @param vectors
* True to compute the eigenvectors, false for just the
* eigenvalues
* @param abstol
* Absolute tolerance criteria
*/
public SymmTridiagEVD(int n, boolean vectors, double abstol) {
super(n, vectors);
this.abstol = abstol;
range = JobEigRange.All;
isuppz = new int[2 * Math.max(1, n)];
// Find the needed workspace
double[] worksize = new double[1];
int[] iworksize = new int[1];
intW info = new intW(0);
LAPACK.getInstance().dstevr(job.netlib(), range.netlib(), n,
new double[0], new double[0], 0, 0, 0, 0, abstol, new intW(1),
new double[0], new double[0], Matrices.ld(n), isuppz, worksize,
-1, iworksize, -1, info);
// Allocate workspace
int lwork = 0, liwork = 0;
if (info.val != 0) {
lwork = 20 * n;
liwork = 10 * n;
} else {
lwork = (int) worksize[0];
liwork = iworksize[0];
}
lwork = Math.max(1, lwork);
liwork = Math.max(1, liwork);
work = new double[lwork];
iwork = new int[liwork];
}
/**
* Convenience method for computing the full eigenvalue decomposition of the
* given matrix
*
* @param A
* Matrix to factorize. Main diagonal and superdiagonal is
* copied, and the matrix is not modified
* @return Newly allocated decomposition
* @throws NotConvergedException
*/
public static SymmTridiagEVD factorize(Matrix A)
throws NotConvergedException {
return new SymmTridiagEVD(A.numRows()).factor(new SymmTridiagMatrix(A));
}
/**
* Computes the eigenvalue decomposition of the given matrix
*
* @param A
* Matrix to factorize. Overwritten on return
* @return The current eigenvalue decomposition
* @throws NotConvergedException
*/
public SymmTridiagEVD factor(SymmTridiagMatrix A)
throws NotConvergedException {
if (A.numRows() != n)
throw new IllegalArgumentException("A.numRows() != n");
intW info = new intW(0);
LAPACK.getInstance().dstevr(job.netlib(), range.netlib(), n,
A.getDiagonal(), A.getOffDiagonal(), 0, 0, 0, 0, abstol,
new intW(1), w,
job == JobEig.All ? Z.getData() : new double[0],
Matrices.ld(n), isuppz, work, work.length, iwork, iwork.length,
info);
if (info.val > 0)
throw new NotConvergedException(
NotConvergedException.Reason.Iterations);
else if (info.val < 0)
throw new IllegalArgumentException();
return this;
}
}