All Downloads are FREE. Search and download functionalities are using the official Maven repository.

no.uib.cipr.matrix.sparse.SparseVector Maven / Gradle / Ivy

Go to download

A comprehensive collection of matrix data structures, linear solvers, least squares methods, eigenvalue, and singular value decompositions. Forked from: https://github.com/fommil/matrix-toolkits-java and added support for eigenvalue computation of general matrices

There is a newer version: 1.0.8
Show newest version
/*
 * Copyright (C) 2003-2006 Bjørn-Ove Heimsund
 * 
 * This file is part of MTJ.
 * 
 * This library is free software; you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as published by the
 * Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * This library is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
 * for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

package no.uib.cipr.matrix.sparse;

import java.util.Iterator;

import no.uib.cipr.matrix.AbstractVector;
import no.uib.cipr.matrix.DenseVector;
import no.uib.cipr.matrix.Matrices;
import no.uib.cipr.matrix.Vector;
import no.uib.cipr.matrix.VectorEntry;

/**
 * Sparse vector
 */
public class SparseVector extends AbstractVector implements ISparseVector {

    /**
     * Data
     */
    double[] data;

    /**
     * Indices to data
     */
    int[] index;

    /**
     * How much has been used
     */
    int used;

    /**
     * Constructor for SparseVector.
     * 
     * @param size
     *            Size of the vector
     * @param nz
     *            Initial number of non-zeros
     */
    public SparseVector(int size, int nz) {
        super(size);
        data = new double[nz];
        index = new int[nz];
    }

    /**
     * Constructor for SparseVector, and copies the contents from the supplied
     * vector.
     * 
     * @param x
     *            Vector to copy from
     * @param deep
     *            True if a deep copy is to be made. If the copy is shallow,
     *            x must be a SparseVector
     */
    public SparseVector(Vector x, boolean deep) {
        super(x);

        if (deep) {
            int nz = Matrices.cardinality(x);
            data = new double[nz];
            index = new int[nz];
            set(x);
        } else {
            SparseVector xs = (SparseVector) x;
            data = xs.getData();
            index = xs.getIndex();
            used = xs.getUsed();
        }
    }

    /**
     * Constructor for SparseVector, and copies the contents from the supplied
     * vector. Zero initial pre-allocation
     * 
     * @param x
     *            Vector to copy from. A deep copy is made
     */
    public SparseVector(Vector x) {
        this(x, true);
    }

    /**
     * Constructor for SparseVector. Zero initial pre-allocation
     * 
     * @param size
     *            Size of the vector
     */
    public SparseVector(int size) {
        this(size, 0);
    }

    /**
     * Constructor for SparseVector
     * 
     * @param size
     *            Size of the vector
     * @param index
     *            Indices of the vector
     * @param data
     *            Entries of the vector
     * @param deep
     *            True for a deep copy. For shallow copies, the given indices
     *            will be used internally
     */
    public SparseVector(int size, int[] index, double[] data, boolean deep) {
        super(size);

        if (index.length != data.length)
            throw new IllegalArgumentException("index.length != data.length");

        if (deep) {
            used = index.length;
            this.index = index.clone();
            this.data = data.clone();
        } else {
            this.index = index;
            this.data = data;
            used = index.length;
        }
    }

    /**
     * Constructor for SparseVector
     * 
     * @param size
     *            Size of the vector
     * @param index
     *            The vector indices are copies from this array
     * @param data
     *            The vector entries are copies from this array
     */
    public SparseVector(int size, int[] index, double[] data) {
        this(size, index, data, true);
    }

    @Override
    public void set(int index, double value) {
        check(index);

        // TODO: should we check against zero when setting zeros?

        int i = getIndex(index);
        data[i] = value;
    }

    @Override
    public void add(int index, double value) {
        check(index);

        int i = getIndex(index);
        data[i] += value;
    }

    @Override
    public double get(int index) {
        check(index);

        int in = Arrays.binarySearch(this.index, index, 0, used);
        if (in >= 0)
            return data[in];
        return 0;
    }

    /**
     * Tries to find the index. If it is not found, a reallocation is done, and
     * a new index is returned.
     */
    private int getIndex(int ind) {

        // Try to find column index
        int i = Arrays.binarySearchGreater(index, ind, 0, used);

        // Found
        if (i < used && index[i] == ind)
            return i;

        int[] newIndex = index;
        double[] newData = data;

        // Check available memory
        if (++used > data.length) {

            // If zero-length, use new length of 1, else double the bandwidth
            int newLength = data.length != 0 ? data.length << 1 : 1;

            // Enforce the maximum size.
            newLength = Math.min(newLength, this.size);

            // Copy existing data into new arrays
            newIndex = new int[newLength];
            newData = new double[newLength];
            System.arraycopy(index, 0, newIndex, 0, i);
            System.arraycopy(data, 0, newData, 0, i);
        }

        // All ok, make room for insertion
        System.arraycopy(index, i, newIndex, i + 1, used - i - 1);
        System.arraycopy(data, i, newData, i + 1, used - i - 1);

        // Put in new structure
        newIndex[i] = ind;
        newData[i] = 0.;

        // Update pointers
        index = newIndex;
        data = newData;

        // Return insertion index
        return i;
    }

    @Override
    public SparseVector copy() {
        return new SparseVector(this);
    }

    @Override
    public SparseVector zero() {
        java.util.Arrays.fill(data, 0);
        used = 0; // TODO: Confirm correctness, java doc says "preserves underlying structure" this will result it overwriting.
        return this;
    }

    @Override
    public SparseVector scale(double alpha) {
        // Quick return if possible
        if (alpha == 0)
            return zero();
        else if (alpha == 1)
            return this;

        for (int i = 0; i < used; ++i)
            data[i] *= alpha;

        return this;
    }

    @Override
    public double dot(Vector y) {
        if (!(y instanceof DenseVector))
            return super.dot(y);

        checkSize(y);

        double[] yd = ((DenseVector) y).getData();

        double ret = 0;
        for (int i = 0; i < used; ++i)
            ret += data[i] * yd[index[i]];
        return ret;
    }

    @Override
    protected double norm1() {
        double sum = 0;
        for (int i = 0; i < used; ++i)
            sum += Math.abs(data[i]);
        return sum;
    }

    @Override
    protected double norm2() {
        double norm = 0;
        for (int i = 0; i < used; ++i)
            norm += data[i] * data[i];
        return Math.sqrt(norm);
    }

    @Override
    protected double norm2_robust() {
        double scale = 0, ssq = 1;
        for (int i = 0; i < used; ++i) {
            if (data[i] != 0) {
                double absxi = Math.abs(data[i]);
                if (scale < absxi) {
                    ssq = 1 + ssq * Math.pow(scale / absxi, 2);
                    scale = absxi;
                } else
                    ssq = ssq + Math.pow(absxi / scale, 2);
            }
        }
        return scale * Math.sqrt(ssq);
    }

    @Override
    protected double normInf() {
        double max = 0;
        for (int i = 0; i < used; ++i)
            max = Math.max(Math.abs(data[i]), max);
        return max;
    }

    /**
     * Returns the internal value array. This array may contain extra elements
     * beyond the number that are used. If it is greater than the number used,
     * the remaining values will be 0. Since this vector can resize its internal
     * data, if it is modified, this array may no longer represent the internal
     * state.
     * 
     * @return The internal array of values.
     */
    public double[] getData() {
        return data;
    }

    /**
     * Returns the used indices
     */
    public int[] getIndex() {
        if (used == index.length)
            return index;

        // could run compact, or return subarray
        // compact();
        int[] indices = new int[used];
        System.arraycopy(index, 0, indices, 0, used);
        return indices;
    }

    /**
     * Gets the raw internal index array. This array may contain extra elements
     * beyond the number that are used. If it is greater than the number used,
     * the remaining indices will be 0. Since this vector can resize its
     * internal data, if it is modified, this array may no longer represent the
     * internal state.
     * 
     * @return The internal array of indices, whose length is greater than or
     *         equal to the number of used elements. Indices in the array beyond
     *         the used elements are not valid indices since they are unused.
     */
    public int[] getRawIndex() {
        return index;
    }

    /**
     * Gets the raw internal data array. This array may contain extra elements
     * beyond the number that are used. If it is greater than the number used,
     * the remaining indices will be 0. Since this vector can resize its
     * internal data, if it is modified, this array may no longer represent the
     * internal state.
     * 
     * @return The internal array of values, whose length is greater than or
     *         equal to the number of used elements. Values in the array beyond
     *         the used elements are not valid since they are unused.
     */
    public double[] getRawData() {
        return data;
    }

    /**
     * Number of entries used in the sparse structure
     */
    public int getUsed() {
        return used;
    }

    @Override
    public void compact() {
        int nz = Matrices.cardinality(this); // catches zero entries

        if (nz < data.length) {
            int[] newIndex = new int[nz];
            double[] newData = new double[nz];

            // Copy only non-zero entries
            for (int i = 0, j = 0; i < data.length; ++i)
                if (data[i] != 0.) {
                    newIndex[j] = index[i];
                    newData[j] = data[i];
                    j++;
                }

            data = newData;
            index = newIndex;
            used = data.length;
        }
    }

    @Override
    public Iterator iterator() {
        return new SparseVectorIterator();
    }

    @Override
    public Vector set(Vector y) {
        if (!(y instanceof SparseVector))
            return super.set(y);

        checkSize(y);

        SparseVector yc = (SparseVector) y;

        if (yc.index.length != index.length) {
            data = new double[yc.data.length];
            index = new int[yc.data.length];
        }

        System.arraycopy(yc.data, 0, data, 0, data.length);
        System.arraycopy(yc.index, 0, index, 0, index.length);
        used = yc.used;

        return this;
    }

    /**
     * Iterator over a sparse vector
     */
    private class SparseVectorIterator implements Iterator {

        private int cursor;

        private final SparseVectorEntry entry = new SparseVectorEntry();

        public boolean hasNext() {
            return cursor < used;
        }

        public VectorEntry next() {
            entry.update(cursor);

            cursor++;

            return entry;
        }

        public void remove() {
            entry.set(0);
        }

    }

    /**
     * Entry of a sparse vector
     */
    private class SparseVectorEntry implements VectorEntry {

        private int cursor;

        public void update(int cursor) {
            this.cursor = cursor;
        }

        public int index() {
            return index[cursor];
        }

        public double get() {
            return data[cursor];
        }

        public void set(double value) {
            data[cursor] = value;
        }

    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy