no.uib.cipr.matrix.sparse.ILUT Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mtj Show documentation
Show all versions of mtj Show documentation
A comprehensive collection of matrix data structures, linear solvers, least squares methods,
eigenvalue, and singular value decompositions.
Forked from: https://github.com/fommil/matrix-toolkits-java
and added support for eigenvalue computation of general matrices
The newest version!
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix.sparse;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import no.uib.cipr.matrix.AbstractMatrix;
import no.uib.cipr.matrix.DenseVector;
import no.uib.cipr.matrix.Matrix;
import no.uib.cipr.matrix.Vector;
import no.uib.cipr.matrix.VectorEntry;
/**
* ILU preconditioner with fill-in. Uses the dual threshold approach of Saad.
*/
public class ILUT implements Preconditioner {
/**
* Factorisation matrix
*/
private final FlexCompRowMatrix LU;
/**
* The L and U factors
*/
private Matrix L, U;
/**
* Temporary vector for solving the factorised system
*/
private final Vector y;
/**
* Drop-tolerance
*/
private final double tau;
/**
* Diagonal indices
*/
private final int[] diagind;
/**
* Stores entries in the lower and upper part of the matrix. Used by the
* dropping rule to determine the largest entries in the two parts of the
* matrix
*/
private final List lower, upper;
/**
* Number of additional entries to keep in the lower and upper part of the
* factored matrix. The entries of the original matrix are always kept,
* unless they numerically too small
*/
private final int p;
/**
* Sets up the preconditioner for the given matrix
*
* @param LU
* Matrix to use internally. For best performance, its non-zero
* pattern should conform to that of the system matrix
* @param tau
* Drop tolerance
* @param p
* Number of entries to keep on each row in of the factored
* matrix. This is in addition to the entries of the original
* matrix
*/
public ILUT(FlexCompRowMatrix LU, double tau, int p) {
if (!LU.isSquare())
throw new IllegalArgumentException(
"ILU only applies to square matrices");
this.LU = LU;
this.tau = tau;
this.p = p;
int n = LU.numRows();
lower = new ArrayList(n);
upper = new ArrayList(n);
y = new DenseVector(n);
diagind = new int[n];
}
/**
* Sets up the preconditioner for the given matrix. Uses a drop-tolerance of
* 10-6, and keeps 50 entries on each row, including the main
* diagonal and any previous entries in the matrix structure
*
* @param LU
* Matrix to use internally. For best performance, its non-zero
* pattern should conform to that of the system matrix
*/
public ILUT(FlexCompRowMatrix LU) {
this(LU, 1e-6, 25);
}
public Vector apply(Vector b, Vector x) {
// Ly = b, y = L\b
L.solve(b, y);
// Ux = L\b = y
return U.solve(y, x);
}
public Vector transApply(Vector b, Vector x) {
// U'y = b, y = U'\b
U.transSolve(b, y);
// L'x = U'\b = y
return L.transSolve(y, x);
}
public void setMatrix(Matrix A) {
LU.set(A);
LU.compact();
factor();
}
private void factor() {
int n = LU.numRows();
double[] LUi = new double[n];
// Find the indices to the diagonal entries
for (int k = 0; k < n; ++k) {
SparseVector row = LU.getRow(k);
diagind[k] = findDiagonalIndex(row, k);
if (diagind[k] < 0)
throw new RuntimeException("Missing diagonal entry on row "
+ (k + 1));
}
for (int i = 1; i < n; ++i) {
// Get row i
SparseVector rowi = LU.getRow(i);
// Drop tolerance on current row
double taui = rowi.norm(Vector.Norm.Two) * tau;
// Store in dense format
scatter(rowi, LUi);
for (int k = 0; k < i; ++k) {
// Get row k
SparseVector rowk = LU.getRow(k);
int[] rowIndex = rowk.getIndex();
int rowUsed = rowk.getUsed();
double[] rowData = rowk.getData();
if (rowData[diagind[k]] == 0)
throw new RuntimeException("Zero diagonal entry on row "
+ (k + 1) + " during ILU process");
double LUik = LUi[k] / rowData[diagind[k]];
// Check for small elimination entry
if (Math.abs(LUik) <= taui)
continue;
// Traverse the sparse row k, reducing row i
for (int j = diagind[k] + 1; j < rowUsed; ++j)
LUi[rowIndex[j]] -= LUik * rowData[j];
// The above has overwritten LUik, so remedy that
LUi[k] = LUik;
}
// Store back into the LU matrix, dropping as needed
gather(LUi, rowi, taui, i);
// Update diagonal index on row i if it is outdated
int diagIndex = diagind[i];
int[] rowiIndices = rowi.getIndex();
if (diagIndex >= rowiIndices.length || rowiIndices[diagIndex] != i) {
diagind[i] = findDiagonalIndex(rowi, i);
if (diagind[i] < 0)
throw new RuntimeException("Missing diagonal entry on row "
+ (i + 1) + " during ILU process");
}
}
L = new UnitLowerFlexCompRowMatrix(LU, diagind);
U = new UpperFlexCompRowMatrix(LU, diagind);
}
private static int findDiagonalIndex(SparseVector v, int k) {
return no.uib.cipr.matrix.sparse.Arrays.binarySearch(v.getIndex(), k,
0, v.getUsed());
}
/**
* Copies the sparse vector into a dense array
*/
private static void scatter(SparseVector v, double[] z) {
int[] index = v.getIndex();
int used = v.getUsed();
double[] data = v.getData();
Arrays.fill(z, 0);
for (int i = 0; i < used; ++i)
z[index[i]] = data[i];
}
/**
* Copies the dense array back into the sparse vector, applying a numerical
* dropping rule and keeping only a given number of entries
*/
private void gather(double[] z, SparseVector v, double taui, int d) {
// Number of entries in the lower and upper part of the original matrix
int nl = 0, nu = 0;
for (VectorEntry e : v) {
if (e.index() < d)
nl++;
else if (e.index() > d)
nu++;
}
v.zero();
// Entries in the L part of the vector
lower.clear();
for (int i = 0; i < d; ++i)
if (Math.abs(z[i]) > taui)
lower.add(new IntDoubleEntry(i, z[i]));
// Entries in the U part of the vector
upper.clear();
for (int i = d + 1; i < z.length; ++i)
if (Math.abs(z[i]) > taui)
upper.add(new IntDoubleEntry(i, z[i]));
// Sort in descending order
Collections.sort(lower);
Collections.sort(upper);
// Always keep the diagonal
v.set(d, z[d]);
// Keep at most nl+p lower entries
for (int i = 0; i < Math.min(nl + p, lower.size()); ++i) {
IntDoubleEntry e = lower.get(i);
v.set(e.index, e.value);
}
// Keep at most nu+p upper entries
for (int i = 0; i < Math.min(nu + p, upper.size()); ++i) {
IntDoubleEntry e = upper.get(i);
v.set(e.index, e.value);
}
}
/**
* Stores an integer/value pair, sorted by descending order according to the
* value
*/
private static class IntDoubleEntry implements Comparable {
public int index;
public double value;
public IntDoubleEntry(int index, double value) {
this.index = index;
this.value = value;
}
public int compareTo(IntDoubleEntry o) {
// Descending order, so keep the largest entries first
if (Math.abs(value) < Math.abs(o.value))
return 1;
else if (Math.abs(value) == Math.abs(o.value))
return 0;
else
return -1;
}
@Override
public String toString() {
return "(" + index + "=" + value + ")";
}
}
/**
* Unit lower triangular flex-CRS matrix. Only used for triangular solves
*/
private static class UnitLowerFlexCompRowMatrix extends AbstractMatrix {
private final FlexCompRowMatrix LU;
private final int[] diagind;
public UnitLowerFlexCompRowMatrix(FlexCompRowMatrix LU, int[] diagind) {
super(LU);
this.LU = LU;
this.diagind = diagind;
}
@Override
public Vector solve(Vector b, Vector x) {
if (!(b instanceof DenseVector) || !(x instanceof DenseVector))
return super.solve(b, x);
double[] bd = ((DenseVector) b).getData();
double[] xd = ((DenseVector) x).getData();
for (int i = 0; i < numRows; ++i) {
// Get row i
SparseVector row = LU.getRow(i);
int[] index = row.getIndex();
double[] data = row.getData();
// xi = bi - sum[j= 0; --i) {
// Get row i
SparseVector row = LU.getRow(i);
int[] index = row.getIndex();
double[] data = row.getData();
// At this stage, x[i] is known, so move it over to the right
// hand side for the remaining equations
for (int j = 0; j < diagind[i]; ++j)
xd[index[j]] -= data[j] * xd[i];
}
return x;
}
}
/**
* Upper triangular flex-CRS matrix. Only used for triangular solves
*/
private static class UpperFlexCompRowMatrix extends AbstractMatrix {
private final FlexCompRowMatrix LU;
private final int[] diagind;
public UpperFlexCompRowMatrix(FlexCompRowMatrix LU, int[] diagind) {
super(LU);
this.LU = LU;
this.diagind = diagind;
}
@Override
public Vector solve(Vector b, Vector x) {
if (!(b instanceof DenseVector) || !(x instanceof DenseVector))
return super.solve(b, x);
double[] bd = ((DenseVector) b).getData();
double[] xd = ((DenseVector) x).getData();
for (int i = numRows - 1; i >= 0; --i) {
// Get row i
SparseVector row = LU.getRow(i);
int[] index = row.getIndex();
int used = row.getUsed();
double[] data = row.getData();
// xi = (bi - sum[j>i] Uij * xj) / Uii
double sum = 0;
for (int j = diagind[i] + 1; j < used; ++j)
sum += data[j] * xd[index[j]];
xd[i] = (bd[i] - sum) / data[diagind[i]];
}
return x;
}
@Override
public Vector transSolve(Vector b, Vector x) {
if (!(x instanceof DenseVector))
return super.transSolve(b, x);
x.set(b);
double[] xd = ((DenseVector) x).getData();
for (int i = 0; i < numRows; ++i) {
// Get row i
SparseVector row = LU.getRow(i);
int[] index = row.getIndex();
int used = row.getUsed();
double[] data = row.getData();
// Solve for the current entry
xd[i] /= data[diagind[i]];
// Move this known solution over to the right hand side for the
// remaining equations
for (int j = diagind[i] + 1; j < used; ++j)
xd[index[j]] -= data[j] * xd[i];
}
return x;
}
}
}