
example.MatrixAlgorithms Maven / Gradle / Ivy
/*
* Zorbage: an algebraic data hierarchy for use in numeric processing.
*
* Copyright (c) 2016-2021 Barry DeZonia All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* Neither the name of the nor the names of its contributors may
* be used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
package example;
import java.math.BigDecimal;
import nom.bdezonia.zorbage.algebra.G;
import nom.bdezonia.zorbage.algebra.MatrixMember;
import nom.bdezonia.zorbage.algorithm.Eye;
import nom.bdezonia.zorbage.algorithm.MatrixAddition;
import nom.bdezonia.zorbage.algorithm.MatrixAssign;
import nom.bdezonia.zorbage.algorithm.MatrixConjugate;
import nom.bdezonia.zorbage.algorithm.MatrixConjugateTranspose;
import nom.bdezonia.zorbage.algorithm.MatrixConstantDiagonal;
import nom.bdezonia.zorbage.algorithm.MatrixDeterminant;
import nom.bdezonia.zorbage.algorithm.MatrixDirectProduct;
import nom.bdezonia.zorbage.algorithm.MatrixEqual;
import nom.bdezonia.zorbage.algorithm.MatrixInvert;
import nom.bdezonia.zorbage.algorithm.MatrixMaximumAbsoluteColumnSumNorm;
import nom.bdezonia.zorbage.algorithm.MatrixMaximumAbsoluteRowSumNorm;
import nom.bdezonia.zorbage.algorithm.MatrixMultiply;
import nom.bdezonia.zorbage.algorithm.MatrixNegate;
import nom.bdezonia.zorbage.algorithm.MatrixPower;
import nom.bdezonia.zorbage.algorithm.MatrixReshape;
import nom.bdezonia.zorbage.algorithm.MatrixRound;
import nom.bdezonia.zorbage.algorithm.MatrixScale;
import nom.bdezonia.zorbage.algorithm.MatrixScaleByDouble;
import nom.bdezonia.zorbage.algorithm.MatrixScaleByHighPrec;
import nom.bdezonia.zorbage.algorithm.MatrixScaleByRational;
import nom.bdezonia.zorbage.algorithm.MatrixSubtraction;
import nom.bdezonia.zorbage.algorithm.MatrixSum;
import nom.bdezonia.zorbage.algorithm.MatrixTrace;
import nom.bdezonia.zorbage.algorithm.MatrixTranspose;
import nom.bdezonia.zorbage.algorithm.MatrixUnity;
import nom.bdezonia.zorbage.algorithm.MatrixZero;
import nom.bdezonia.zorbage.algorithm.Ones;
import nom.bdezonia.zorbage.algorithm.Round;
import nom.bdezonia.zorbage.algorithm.Zeroes;
import nom.bdezonia.zorbage.type.complex.float64.ComplexFloat64MatrixMember;
import nom.bdezonia.zorbage.type.rational.RationalMember;
import nom.bdezonia.zorbage.type.real.float64.Float64MatrixMember;
import nom.bdezonia.zorbage.type.real.float64.Float64Member;
import nom.bdezonia.zorbage.type.real.highprec.HighPrecisionMember;
/**
* @author Barry DeZonia
*/
class MatrixAlgorithms {
// Zorbage has many basic matrix algorithms. The examples below are mostly using
// doubles but note that any precision of reals, complexes, quaternions, and octonions
// can be substituted instead as needed.
void example1() {
Float64MatrixMember a = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64MatrixMember b = new Float64MatrixMember(2, 2, new double[] {5,6,7,8});
Float64MatrixMember c = new Float64MatrixMember();
MatrixAddition.compute(G.DBL, a, b, c);
// c == [[6,8]
// [10,12]]
}
void example2() {
Float64MatrixMember a = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64MatrixMember b = new Float64MatrixMember();
MatrixAssign.compute(G.DBL, a, b);
// b = [[1,2]
// [3,4]]
}
void example3() {
ComplexFloat64MatrixMember a =
new ComplexFloat64MatrixMember(2, 2, new double[] {1,2,3,4,5,-5,7,-8});
ComplexFloat64MatrixMember b = new ComplexFloat64MatrixMember();
// a = [[(1,2), (3,4)]
// [(5,-6), (7,-8)]]
MatrixConjugate.compute(G.CDBL, a, b);
// b = [[(1,-2), (3,-4)]
// [(5,6), (7,8)]]
}
void example4() {
ComplexFloat64MatrixMember a =
new ComplexFloat64MatrixMember(2, 2, new double[] {1,2,3,4,5,-5,7,-8});
ComplexFloat64MatrixMember b = new ComplexFloat64MatrixMember();
// a = [[(1,2), (3,4)]
// [(5,-6), (7,-8)]]
MatrixConjugateTranspose.compute(G.CDBL, a, b);
// b = [[(1,-2), (5,6)]
// [(3,-4), (7,8)]]
}
void example5() {
Float64Member constant = new Float64Member(74);
Float64MatrixMember mat = new Float64MatrixMember(3, 3);
MatrixConstantDiagonal.compute(G.DBL, constant, mat);
// mat = [[74,0,0]
// [0,74,0]
// [0,0,74]]
}
void example6() {
Float64MatrixMember mat = new Float64MatrixMember(3, 3, new double[] {1,2,3,4,5,6,7,8,9});
Float64Member det = G.DBL.construct();
MatrixDeterminant.compute(G.DBL_MAT, G.DBL, mat, det);
// det = the determinant of the mat
}
void example7() {
Float64MatrixMember in1 = new Float64MatrixMember(2, 2, new double[] {-2,0,1,6});
Float64MatrixMember in2 = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64MatrixMember out = G.DBL_MAT.construct();
MatrixDirectProduct.compute(G.DBL, in1, in2, out);
// out = [[-2, -4, 0, 0]
// [-6, -8, 0, 0]
// [1, 2, 6, 12]
// [3, 4, 18, 24]]
}
@SuppressWarnings("unused")
void example8() {
Float64MatrixMember a = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64MatrixMember b = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64MatrixMember c = new Float64MatrixMember(2, 2, new double[] {5,6,3,2});
boolean res1 = MatrixEqual.compute(G.DBL, a, b);
// res1 = true
boolean res2 = MatrixEqual.compute(G.DBL, a, c);
// res2 = false
}
void example9() {
Float64MatrixMember in = new Float64MatrixMember(2, 2, new double[] {5,6,3,2});
Float64MatrixMember out = new Float64MatrixMember();
MatrixInvert.compute(G.DBL, G.DBL_VEC, G.DBL_MAT, in, out);
// out contains the inverse of the in matrix
}
void example10() {
Float64MatrixMember matrix = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64Member result = G.DBL.construct();
MatrixMaximumAbsoluteColumnSumNorm.compute(G.DBL, G.DBL, matrix, result);
// result = 6
}
void example11() {
Float64MatrixMember matrix = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64Member result = G.DBL.construct();
MatrixMaximumAbsoluteRowSumNorm.compute(G.DBL, G.DBL, matrix, result);
// result = 7
}
void example12() {
Float64MatrixMember a = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64MatrixMember b = new Float64MatrixMember(2, 1, new double[] {3,5});
Float64MatrixMember c = new Float64MatrixMember();
MatrixMultiply.compute(G.DBL, a, b, c);
// c = [[13]
// [29]]
}
void example13() {
Float64MatrixMember a = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64MatrixMember b = new Float64MatrixMember();
MatrixNegate.compute(G.DBL, a, b);
// b = [[-1,-2]
// [-3,-4]]
}
void example14() {
Float64MatrixMember a = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64MatrixMember b = new Float64MatrixMember();
MatrixPower.compute(4, G.DBL, G.DBL_VEC, G.DBL_MAT, a, b);
// b = a ^ 4
}
void example15() {
Float64MatrixMember a = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
MatrixReshape.compute(G.DBL_MAT, G.DBL, 3, 3, a);
// a = [[1, 2, 0]
// [3, 4, 0]
// [0, 0, 0]]
}
void example16() {
Float64MatrixMember a = new Float64MatrixMember(2, 2, new double[] {1.1, 2.2, 3.3, 4.4});
Float64MatrixMember b = G.DBL_MAT.construct();
Float64Member delta = new Float64Member(1);
MatrixRound.compute(G.DBL, Round.Mode.HALF_DOWN, delta, a, b);
// b = [[1,2]
// [3,4]]
}
void example17() {
Float64MatrixMember a = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64MatrixMember b = G.DBL_MAT.construct();
Float64Member scale = new Float64Member(1.3333333333);
MatrixScale.compute(G.DBL, scale, a, b);
// b = [[1.33, 2.67]
// [3.99, 5.33]]
}
void example18() {
Float64MatrixMember a = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64MatrixMember b = G.DBL_MAT.construct();
double scale = 1.3333333333;
MatrixScaleByDouble.compute(G.DBL, scale, a, b);
// b = [[1.33, 2.67]
// [3.99, 5.33]]
}
void example19() {
Float64MatrixMember a = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64MatrixMember b = G.DBL_MAT.construct();
HighPrecisionMember scale = new HighPrecisionMember(BigDecimal.valueOf(1.3333333333));
MatrixScaleByHighPrec.compute(G.DBL, scale, a, b);
// b = [[1.33, 2.67]
// [3.99, 5.33]]
}
void example20() {
Float64MatrixMember a = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64MatrixMember b = G.DBL_MAT.construct();
RationalMember rational = new RationalMember(4,3);
MatrixScaleByRational.compute(G.DBL, rational, a, b);
// b = [[1.33, 2.67]
// [3.99, 5.33]]
}
void example22() {
Float64MatrixMember a = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64MatrixMember b = new Float64MatrixMember(2, 2, new double[] {5,6,7,8});
Float64MatrixMember c = new Float64MatrixMember();
MatrixSubtraction.compute(G.DBL, a, b, c);
// c == [[-4,-4]
// [-4,-4]]
}
void example23() {
Float64MatrixMember mat = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64Member result = G.DBL.construct();
MatrixSum.compute(G.DBL, mat, result);
// result = 10
}
void example24() {
Float64MatrixMember mat = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
Float64Member result = G.DBL.construct();
MatrixTrace.compute(G.DBL, mat, result);
// result = 5
}
void example25() {
Float64MatrixMember mat = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
// mat is [[1,2]
// [3,4]]
MatrixTranspose.compute(G.DBL, mat, mat);
// mat is [[1,3]
// [2,4]]
}
void example26() {
Float64MatrixMember mat = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
// mat is [[1,2]
// [3,4]]
MatrixUnity.compute(G.DBL, mat);
// mat is [[1,0]
// [0,1]]
}
void example27() {
Float64MatrixMember mat = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
// mat is [[1,2]
// [3,4]]
MatrixZero.compute(mat);
// mat is [[0,0]
// [0,0]]
}
void example28() {
Float64MatrixMember mat = new Float64MatrixMember(25, 25);
Ones.compute(G.DBL, mat);
// mat is filled with ones
}
void example29() {
Float64MatrixMember mat = new Float64MatrixMember(2, 2, new double[] {1,2,3,4});
// mat is [[1,2]
// [3,4]]
Zeroes.compute(G.DBL, mat);
// mat is [[0,0]
// [0,0]]
}
@SuppressWarnings("unused")
void example30() {
MatrixMember mat = Eye.compute(G.DBL_MAT, 4, 4);
// mat is [[1,0,0,0]
// [0,1,0,0]
// [0,0,1,0]
// [0,0,0,1]]
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy