
example.RModuleAlgorithms Maven / Gradle / Ivy
/*
* Zorbage: an algebraic data hierarchy for use in numeric processing.
*
* Copyright (c) 2016-2021 Barry DeZonia All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* Neither the name of the nor the names of its contributors may
* be used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
package example;
import java.math.BigDecimal;
import nom.bdezonia.zorbage.algebra.G;
import nom.bdezonia.zorbage.algorithm.RModuleAdd;
import nom.bdezonia.zorbage.algorithm.RModuleAssign;
import nom.bdezonia.zorbage.algorithm.RModuleConjugate;
import nom.bdezonia.zorbage.algorithm.RModuleDefaultNorm;
import nom.bdezonia.zorbage.algorithm.RModuleDirectProduct;
import nom.bdezonia.zorbage.algorithm.RModuleEqual;
import nom.bdezonia.zorbage.algorithm.RModuleHermitianProduct;
import nom.bdezonia.zorbage.algorithm.RModuleNegate;
import nom.bdezonia.zorbage.algorithm.RModuleReshape;
import nom.bdezonia.zorbage.algorithm.RModuleRound;
import nom.bdezonia.zorbage.algorithm.RModuleScale;
import nom.bdezonia.zorbage.algorithm.RModuleScaleByDouble;
import nom.bdezonia.zorbage.algorithm.RModuleScaleByHighPrec;
import nom.bdezonia.zorbage.algorithm.RModuleScaleByRational;
import nom.bdezonia.zorbage.algorithm.RModuleSubtract;
import nom.bdezonia.zorbage.algorithm.RModuleSum;
import nom.bdezonia.zorbage.algorithm.RModuleZero;
import nom.bdezonia.zorbage.algorithm.Round;
import nom.bdezonia.zorbage.type.complex.float64.ComplexFloat64Member;
import nom.bdezonia.zorbage.type.complex.float64.ComplexFloat64VectorMember;
import nom.bdezonia.zorbage.type.rational.RationalMember;
import nom.bdezonia.zorbage.type.real.float64.Float64MatrixMember;
import nom.bdezonia.zorbage.type.real.float64.Float64Member;
import nom.bdezonia.zorbage.type.real.float64.Float64VectorMember;
import nom.bdezonia.zorbage.type.real.highprec.HighPrecisionMember;
/**
* @author Barry DeZonia
*/
class RModuleAlgorithms {
// Zorbage has many basic vector/rmodule algorithms. The examples below are mostly using
// doubles but note that any precision of reals, complexes, quaternions, and octonions
// can be substituted instead as needed.
void example1() {
Float64VectorMember a = new Float64VectorMember(new double[] {1,2,3});
Float64VectorMember b = new Float64VectorMember(new double[] {5,7,1});
Float64VectorMember sum = new Float64VectorMember();
RModuleAdd.compute(G.DBL, a, b, sum);
// sum = [6, 9, 4]
}
void example2() {
Float64VectorMember a = new Float64VectorMember(new double[] {1,2,3});
Float64VectorMember result = new Float64VectorMember();
RModuleAssign.compute(G.DBL, a, result);
// result = [1, 2, 3]
}
void example3() {
ComplexFloat64VectorMember a =
new ComplexFloat64VectorMember(new double[] {1, -1, 2, 0, 3, -4});
ComplexFloat64VectorMember result = new ComplexFloat64VectorMember();
RModuleConjugate.compute(G.CDBL, a, result);
// result = [(1, 1), (2, 0), (3, 4)]
}
void example4() {
ComplexFloat64VectorMember a =
new ComplexFloat64VectorMember(new double[] {1, -1, 2, 0, 3, -4});
Float64Member result = new Float64Member();
RModuleDefaultNorm.compute(G.CDBL, G.DBL, a, result);
}
void example5() {
Float64VectorMember a = new Float64VectorMember(new double[] {1,2,3});
Float64VectorMember b = new Float64VectorMember(new double[] {5,3,1});
Float64MatrixMember result = G.DBL_MAT.construct();
RModuleDirectProduct.compute(G.DBL, a, b, result);
// result = [[5, 3, 1]
// [10, 6, 2]
// [15, 9, 3]]
}
@SuppressWarnings("unused")
void example6() {
ComplexFloat64VectorMember a =
new ComplexFloat64VectorMember(new double[] {1, -1, 2, 0, 3, -4});
ComplexFloat64VectorMember b =
new ComplexFloat64VectorMember(new double[] {1, -1, 2, 0, 3, -4});
ComplexFloat64VectorMember c =
new ComplexFloat64VectorMember(new double[] {1, 1, 1, 1, 1, 1});
boolean res1 = RModuleEqual.compute(G.CDBL, a, b);
// res1 = true
boolean res2 = RModuleEqual.compute(G.CDBL, a, c);
// res2 = false
}
void example7() {
ComplexFloat64VectorMember a =
new ComplexFloat64VectorMember(new double[] {1, -1, 2, 0, 3, -4});
ComplexFloat64VectorMember b =
new ComplexFloat64VectorMember(new double[] {1, -1, 2, 0, 3, -4});
ComplexFloat64Member result = G.CDBL.construct();
RModuleHermitianProduct.compute(G.CDBL, a, b, result);
// result contains the hermitian product of the two vectors
}
void example8() {
ComplexFloat64VectorMember a =
new ComplexFloat64VectorMember(new double[] {1, -1, 2, 0, 3, -4});
RModuleNegate.compute(G.CDBL, a, a);
// a contains [(-1,1), (-2,0), (-3,4)]
}
void example9() {
Float64VectorMember a =
new Float64VectorMember(new double[] {1, -1, 2, 0, 3, -4});
RModuleReshape.compute(G.DBL_VEC, G.DBL, 8, a);
// a = [1, -1, 2, 0, 3, -4, 0, 0]
RModuleReshape.compute(G.DBL_VEC, G.DBL, 4, a);
// a = [1, -1, 2, 0]
}
void example10() {
Float64VectorMember a =
new Float64VectorMember(new double[] {1.4, -1.2, 2.3, 0, 3.6, -4.1});
Float64VectorMember b = G.DBL_VEC.construct();
Float64Member delta = new Float64Member(1);
RModuleRound.compute(G.DBL, Round.Mode.HALF_EVEN, delta, a, b);
// b = [1.0, -1.0, 2.0, 0, 4.0, -4.0]
}
void example11() {
Float64VectorMember a =
new Float64VectorMember(new double[] {1, -1, 2, 0, 3, -4});
Float64VectorMember b = G.DBL_VEC.construct();
Float64Member scale = new Float64Member(17);
RModuleScale.compute(G.DBL, scale, a, b);
// b = [17, -17, 34, 0, 51, -68]
}
void example12() {
Float64VectorMember a =
new Float64VectorMember(new double[] {1, -1, 2, 0, 3, -4});
Float64VectorMember b = G.DBL_VEC.construct();
double scale = 17.0;
RModuleScaleByDouble.compute(G.DBL, scale, a, b);
// b = [17, -17, 34, 0, 51, -68]
}
void example13() {
Float64VectorMember a =
new Float64VectorMember(new double[] {1, -1, 2, 0, 3, -4});
Float64VectorMember b = G.DBL_VEC.construct();
HighPrecisionMember scale = new HighPrecisionMember(BigDecimal.valueOf(17));
RModuleScaleByHighPrec.compute(G.DBL, scale, a, b);
// b = [17, -17, 34, 0, 51, -68]
}
void example14() {
Float64VectorMember a =
new Float64VectorMember(new double[] {1, -1, 2, 0, 3, -4});
Float64VectorMember b = G.DBL_VEC.construct();
RationalMember scale = new RationalMember(34,2);
RModuleScaleByRational.compute(G.DBL, scale, a, b);
// b = [17, -17, 34, 0, 51, -68]
}
void example15() {
Float64VectorMember a =
new Float64VectorMember(new double[] {1, -1, 2, 0, 3, -4});
Float64VectorMember b =
new Float64VectorMember(new double[] {3, -1, -3, 5, 2, -4});
Float64VectorMember c = G.DBL_VEC.construct();
RModuleSubtract.compute(G.DBL, a, b, c);
// c = [-2, 0, 5, -5, 1, 0]
}
void example16() {
Float64VectorMember a =
new Float64VectorMember(new double[] {1, -1, 2, 0, 3, -4});
Float64Member result = G.DBL.construct();
RModuleSum.compute(G.DBL, a, result);
// result = 1
}
void example17() {
Float64VectorMember a =
new Float64VectorMember(new double[] {1, -1, 2, 0, 3, -4});
RModuleZero.compute(a);
// a = [0, 0, 0, 0, 0, 0]
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy