
example.SignalProcessing Maven / Gradle / Ivy
/*
* Zorbage: an algebraic data hierarchy for use in numeric processing.
*
* Copyright (c) 2016-2021 Barry DeZonia All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* Neither the name of the nor the names of its contributors may
* be used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
package example;
import nom.bdezonia.zorbage.algebra.G;
import nom.bdezonia.zorbage.algorithm.ConvolveND;
import nom.bdezonia.zorbage.algorithm.CorrelateND;
import nom.bdezonia.zorbage.algorithm.FFT;
import nom.bdezonia.zorbage.algorithm.Fill;
import nom.bdezonia.zorbage.algorithm.InvFFT;
import nom.bdezonia.zorbage.algorithm.ResampleAveragedCubics;
import nom.bdezonia.zorbage.algorithm.ResampleAveragedLinears;
import nom.bdezonia.zorbage.algorithm.ResampleNearestNeighbor;
import nom.bdezonia.zorbage.data.DimensionedDataSource;
import nom.bdezonia.zorbage.data.DimensionedStorage;
import nom.bdezonia.zorbage.data.ProcedurePaddedDimensionedDataSource;
import nom.bdezonia.zorbage.datasource.IndexedDataSource;
import nom.bdezonia.zorbage.oob.nd.ZeroNdOOB;
import nom.bdezonia.zorbage.sampling.IntegerIndex;
import nom.bdezonia.zorbage.type.complex.float64.ComplexFloat64Member;
import nom.bdezonia.zorbage.type.real.float16.Float16Member;
import nom.bdezonia.zorbage.type.real.highprec.HighPrecisionMember;
/**
* @author Barry DeZonia
*/
class SignalProcessing {
// Zorbage provides some signal processing algorithms
// FFT / inverse FFT
void example1() {
IndexedDataSource orig =
nom.bdezonia.zorbage.storage.Storage.allocate(G.CDBL.construct(), 512L);
IndexedDataSource tmp =
nom.bdezonia.zorbage.storage.Storage.allocate(G.CDBL.construct(), 512L);
Fill.compute(G.CDBL, G.CDBL.random(), orig);
FFT.compute(G.CDBL, G.DBL, orig, tmp);
// < do something here: like make high modulus values into zeroes >
InvFFT.compute(G.CDBL, G.DBL, tmp, orig);
// here the original signal has now had high frequency values removed
}
// correlation in 1-d or n-d: n-d shown here
// also note that parallel versions exists for speedy processing
void example2() {
long[] dims = new long[]{100,100,100};
DimensionedDataSource input =
DimensionedStorage.allocate(G.HLF.construct(), dims);
Fill.compute(G.HLF, G.HLF.random(), input.rawData());
DimensionedDataSource output =
DimensionedStorage.allocate(G.HLF.construct(), dims);
ProcedurePaddedDimensionedDataSource, Float16Member> padded =
new ProcedurePaddedDimensionedDataSource<>(G.HLF, input, new ZeroNdOOB<>(G.HLF, input));
DimensionedDataSource filter =
DimensionedStorage.allocate(G.HLF.construct(), new long[] {3,3,3});
Float16Member value = G.HLF.construct();
IntegerIndex index = new IntegerIndex(dims.length);
index.set(0, 1);
index.set(1, 1);
index.set(2, 1);
value.setV(3);
filter.set(index, value);
index.set(0, 2);
index.set(1, 1);
index.set(2, 2);
value.setV(-4);
filter.set(index, value);
index.set(0, 0);
index.set(1, 1);
index.set(2, 2);
value.setV(12);
filter.set(index, value);
CorrelateND.compute(G.HLF, filter, padded, output);
}
// convolution in 1-d or n-d: n-d shown here
// also note that parallel versions exists for speedy processing
void example3() {
long[] dims = new long[]{100,100,100};
DimensionedDataSource input =
DimensionedStorage.allocate(G.HLF.construct(), dims);
Fill.compute(G.HLF, G.HLF.random(), input.rawData());
DimensionedDataSource output =
DimensionedStorage.allocate(G.HLF.construct(), dims);
ProcedurePaddedDimensionedDataSource, Float16Member> padded =
new ProcedurePaddedDimensionedDataSource<>(G.HLF, input, new ZeroNdOOB<>(G.HLF, input));
DimensionedDataSource filter =
DimensionedStorage.allocate(G.HLF.construct(), new long[] {3,3,3});
Float16Member value = G.HLF.construct();
IntegerIndex index = new IntegerIndex(dims.length);
index.set(0, 1);
index.set(1, 1);
index.set(2, 1);
value.setV(3);
filter.set(index, value);
index.set(0, 2);
index.set(1, 1);
index.set(2, 2);
value.setV(-4);
filter.set(index, value);
index.set(0, 0);
index.set(1, 1);
index.set(2, 2);
value.setV(12);
filter.set(index, value);
ConvolveND.compute(G.HLF, filter, padded, output);
}
// resampling : multiple algorithms exist. There are the equivalent of nearest neighbor resampling,
// bilinear resampling, and bicubic resampling. The major difference is that they work in n-d
// space.
@SuppressWarnings("unused")
void example4() {
DimensionedDataSource input =
DimensionedStorage.allocate(G.HP.construct(), new long[] {1000,1000,1000});
long[] newDims = new long[] {330,542,861};
DimensionedDataSource output1 = ResampleNearestNeighbor.compute(G.HP, newDims, input);
DimensionedDataSource output2 = ResampleAveragedLinears.compute(G.HP, newDims, input);
DimensionedDataSource output3 = ResampleAveragedCubics.compute(G.HP, newDims, input);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy