
example.TensorAlgorithms Maven / Gradle / Ivy
/*
* Zorbage: an algebraic data hierarchy for use in numeric processing.
*
* Copyright (c) 2016-2021 Barry DeZonia All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* Neither the name of the nor the names of its contributors may
* be used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
package example;
import nom.bdezonia.zorbage.algebra.G;
import nom.bdezonia.zorbage.algorithm.Round;
import nom.bdezonia.zorbage.algorithm.TensorCommaDerivative;
import nom.bdezonia.zorbage.algorithm.TensorNorm;
import nom.bdezonia.zorbage.algorithm.TensorOuterProduct;
import nom.bdezonia.zorbage.algorithm.TensorPower;
import nom.bdezonia.zorbage.algorithm.TensorRound;
import nom.bdezonia.zorbage.algorithm.TensorSemicolonDerivative;
import nom.bdezonia.zorbage.algorithm.TensorShape;
import nom.bdezonia.zorbage.algorithm.TensorUnity;
import nom.bdezonia.zorbage.type.complex.float64.ComplexFloat64CartesianTensorProductMember;
import nom.bdezonia.zorbage.type.real.float64.Float64CartesianTensorProductMember;
import nom.bdezonia.zorbage.type.real.float64.Float64Member;
/**
* @author Barry DeZonia
*/
class TensorAlgorithms {
// Zorbage has a number of basic tensor algorithms. The examples below are mostly using
// doubles but note that any precision of reals, complexes, quaternions, and octonions
// can be substituted instead as needed.
void example1() {
Float64CartesianTensorProductMember a = new Float64CartesianTensorProductMember(3, 4);
Float64CartesianTensorProductMember b = G.DBL_TEN.construct();
TensorCommaDerivative.compute(G.DBL_TEN, G.DBL, 1, a, b);
// b contains the comma derivative of a
}
void example2() {
ComplexFloat64CartesianTensorProductMember a =
new ComplexFloat64CartesianTensorProductMember(3, 4);
Float64Member b = G.DBL.construct();
TensorNorm.compute(G.CDBL, G.DBL, a.rawData(), b);
// b contains the norm of a
}
void example3() {
ComplexFloat64CartesianTensorProductMember a =
new ComplexFloat64CartesianTensorProductMember(3, 4);
ComplexFloat64CartesianTensorProductMember b =
new ComplexFloat64CartesianTensorProductMember(3, 4);
ComplexFloat64CartesianTensorProductMember c = G.CDBL_TEN.construct();
TensorOuterProduct.compute(G.CDBL_TEN, G.CDBL, a, b, c);
// c contains the outer prodcut of a and b
}
void example4() {
Float64CartesianTensorProductMember a =
new Float64CartesianTensorProductMember(3, 4);
Float64CartesianTensorProductMember b = G.DBL_TEN.construct();
TensorPower.compute(G.DBL_TEN, 4, a, b);
// b = a ^ 4
}
void example5() {
Float64CartesianTensorProductMember a =
new Float64CartesianTensorProductMember(3, 4);
Float64CartesianTensorProductMember b = G.DBL_TEN.construct();
Float64Member delta = new Float64Member(1);
TensorRound.compute(G.DBL_TEN, G.DBL, Round.Mode.AWAY_FROM_ORIGIN, delta, a, b);
// b contains the rounded version of a
}
void example6() {
Float64CartesianTensorProductMember a =
new Float64CartesianTensorProductMember(3, 4);
Float64CartesianTensorProductMember b = G.DBL_TEN.construct();
TensorSemicolonDerivative.compute(G.DBL_TEN, G.DBL, 2, a, b);
// b contains the semicolon derivative of a
}
void example7() {
ComplexFloat64CartesianTensorProductMember a =
new ComplexFloat64CartesianTensorProductMember(3, 4);
ComplexFloat64CartesianTensorProductMember b = G.CDBL_TEN.construct();
TensorShape.compute(a, b);
// b now has rank of 3 and dimCount of 4
}
void example8() {
ComplexFloat64CartesianTensorProductMember a =
new ComplexFloat64CartesianTensorProductMember(3, 4);
TensorUnity.compute(G.CDBL_TEN, G.CDBL, a);
// a contains a tensor that is zero most places but is one on the super diagonal
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy