
nom.bdezonia.zorbage.algorithm.EuclideanGcd Maven / Gradle / Ivy
/*
* Zorbage: an algebraic data hierarchy for use in numeric processing.
*
* Copyright (c) 2016-2021 Barry DeZonia All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* Neither the name of the nor the names of its contributors may
* be used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
package nom.bdezonia.zorbage.algorithm;
import nom.bdezonia.zorbage.algebra.Algebra;
import nom.bdezonia.zorbage.algebra.ModularDivision;
import nom.bdezonia.zorbage.algebra.Norm;
import nom.bdezonia.zorbage.algebra.Ordered;
import nom.bdezonia.zorbage.algebra.Settable;
/**
*
* @author Barry DeZonia
*
*/
public class EuclideanGcd {
// do not instantiate
public EuclideanGcd() { }
/**
* Calculate the greatest common divisor of two numbers (and number
* like constructions). Uses the Euclidean algorithm which is simple
* and quite fast but not optimal. But it works with fewer type
* constraints than other algorithms.
*
* @param uAlg
* @param wAlg
* @param a
* @param b
* @param result
*/
public static & ModularDivision & Norm,
U extends Settable,
V extends Algebra & Ordered,
W extends Settable>
void compute(T uAlg, V wAlg, U a, U b, U result)
{
U x = uAlg.construct();
U y = uAlg.construct();
U t = uAlg.construct();
W normA = wAlg.construct();
W normB = wAlg.construct();
W origNorm = wAlg.construct();
W tmpNorm = wAlg.construct();
uAlg.norm().call(a, normA);
uAlg.norm().call(b, normB);
if (wAlg.isGreater().call(normA, normB)) {
x.set(a);
y.set(b);
origNorm.set(normA);
}
else {
x.set(b);
y.set(a);
origNorm.set(normB);
}
while (!uAlg.isZero().call(y)) {
t.set(y);
uAlg.mod().call(x, y, y);
x.set(t);
uAlg.norm().call(x, tmpNorm);
if (wAlg.isGreaterEqual().call(tmpNorm, origNorm))
throw new IllegalArgumentException("euclidean gcd algorithm cannot converge for given inputs : due to overflow?");
}
result.set(x);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy