
nom.bdezonia.zorbage.algorithm.Multiply Maven / Gradle / Ivy
/*
* Zorbage: an algebraic data hierarchy for use in numeric processing.
*
* Copyright (c) 2016-2021 Barry DeZonia All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* Neither the name of the nor the names of its contributors may
* be used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
package nom.bdezonia.zorbage.algorithm;
import nom.bdezonia.zorbage.algebra.Addition;
import nom.bdezonia.zorbage.algebra.Algebra;
import nom.bdezonia.zorbage.algebra.Bounded;
import nom.bdezonia.zorbage.algebra.EvenOdd;
import nom.bdezonia.zorbage.algebra.Ordered;
import nom.bdezonia.zorbage.algebra.ScaleByOneHalf;
import nom.bdezonia.zorbage.algebra.Unity;
// Adapted from an algorithm as published by Stepanov and Rose 2015.
// I believe it is a Russian Peasant approach.
/**
*
* @author Barry DeZonia
*
*/
public class Multiply {
// do not instantiate
private Multiply() { }
/**
* Multiply is an algorithm for multiplying many kinds of types.
* In this code z = x * y.
*
* @param algebra
* @param x
* @param y
* @param z
*/
public static & Addition & Unity & Ordered & EvenOdd &
ScaleByOneHalf & Bounded,
U>
void compute(T algebra, U x, U y, U z)
{
// optimize zero calculations away
U zero = algebra.construct();
if (algebra.isZero().call(x) || algebra.isZero().call(y)) {
algebra.assign().call(zero, z);
return;
}
// This part of the code kind of assumes that the passed in type is a
// modular integer
U min = algebra.construct();
algebra.minBound().call(min);
if (algebra.isEqual().call(x, min)) {
if (algebra.isOdd().call(y))
algebra.assign().call(min, z);
else
algebra.assign().call(zero, z);
return;
}
if (algebra.isEqual().call(y, min)) {
if (algebra.isOdd().call(x))
algebra.assign().call(min, z);
else
algebra.assign().call(zero, z);
return;
}
// make sure inputs are positive. this code only applies to signed types.
// unsigned types just pass through.
boolean xNeg;
boolean yNeg;
U xPos = algebra.construct();
U yPos = algebra.construct();
if (algebra.isLess().call(x, zero)) {
xNeg = true;
algebra.negate().call(x, xPos);
}
else {
xNeg = false;
algebra.assign().call(x, xPos);
}
if (algebra.isLess().call(y, zero)) {
yNeg = true;
algebra.negate().call(y, yPos);
}
else {
yNeg = false;
algebra.assign().call(y, yPos);
}
// swap terms so that fastest form of input is used
if (algebra.isGreater().call(xPos, yPos)) {
Swap.compute(algebra, xPos, yPos);
}
// 1st Stepanov algorithm inline
U one = algebra.construct();
algebra.unity().call(one);
while (!algebra.isOdd().call(xPos)) {
algebra.add().call(yPos, yPos, yPos);
algebra.scaleByOneHalf().call(1, xPos, xPos);
}
if (algebra.isEqual().call(one, xPos)) {
algebra.assign().call(yPos, z);
if (xNeg != yNeg) {
// flip the result's sign once
algebra.subtract().call(zero, z, z);
}
return;
}
// 2nd Stepanov algorithm inline
U r = algebra.construct(yPos);
U n = algebra.construct(xPos);
algebra.subtract().call(n, one, n);
algebra.scaleByOneHalf().call(1, n, n);
U a = algebra.construct(yPos);
algebra.add().call(a, a, a);
while (true) {
if (algebra.isOdd().call(n)) {
algebra.add().call(r, a, r);
if (algebra.isEqual().call(one, n)) {
algebra.assign().call(r, z);
if (xNeg != yNeg) {
// flip the result's sign once
algebra.subtract().call(zero, z, z);
}
return;
}
}
algebra.scaleByOneHalf().call(1, n, n);
algebra.add().call(a, a, a);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy