All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.cmu.tetradapp.model.FasRunner Maven / Gradle / Ivy

///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below.       //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,       //
// 2007, 2008, 2009, 2010, 2014, 2015, 2022 by Peter Spirtes, Richard        //
// Scheines, Joseph Ramsey, and Clark Glymour.                               //
//                                                                           //
// This program is free software; you can redistribute it and/or modify      //
// it under the terms of the GNU General Public License as published by      //
// the Free Software Foundation; either version 2 of the License, or         //
// (at your option) any later version.                                       //
//                                                                           //
// This program is distributed in the hope that it will be useful,           //
// but WITHOUT ANY WARRANTY; without even the implied warranty of            //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             //
// GNU General Public License for more details.                              //
//                                                                           //
// You should have received a copy of the GNU General Public License         //
// along with this program; if not, write to the Free Software               //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA //
///////////////////////////////////////////////////////////////////////////////

package edu.cmu.tetradapp.model;

import edu.cmu.tetrad.data.IKnowledge;
import edu.cmu.tetrad.data.Knowledge2;
import edu.cmu.tetrad.graph.*;
import edu.cmu.tetrad.search.*;
import edu.cmu.tetrad.util.Parameters;
import edu.cmu.tetrad.util.TetradSerializableUtils;

import java.util.ArrayList;
import java.util.List;

/**
 * Extends AbstractAlgorithmRunner to produce a wrapper for the PC algorithm.
 *
 * @author Joseph Ramsey
 */
public class FasRunner extends AbstractAlgorithmRunner
        implements IndTestProducer {
    static final long serialVersionUID = 23L;
    private Graph externalGraph;

    //============================CONSTRUCTORS============================//

    /**
     * Constructs a wrapper for the given DataWrapper. The DataWrapper must
     * contain a DataSet that is either a DataSet or a DataSet or a DataList
     * containing either a DataSet or a DataSet as its selected model.
     */
    public FasRunner(DataWrapper dataWrapper, Parameters params) {
        super(dataWrapper, params, null);
    }

    public FasRunner(DataWrapper dataWrapper, Parameters params, KnowledgeBoxModel knowledgeBoxModel) {
        super(dataWrapper, params, knowledgeBoxModel);
    }

    // Starts PC from the given graph.
    public FasRunner(DataWrapper dataWrapper, GraphWrapper graphWrapper, Parameters params) {
        super(dataWrapper, params, null);
        this.externalGraph = graphWrapper.getGraph();
    }

    public FasRunner(DataWrapper dataWrapper, GraphWrapper graphWrapper, Parameters params, KnowledgeBoxModel knowledgeBoxModel) {
        super(dataWrapper, params, knowledgeBoxModel);
        this.externalGraph = graphWrapper.getGraph();
    }

    /**
     * Constucts a wrapper for the given EdgeListGraph.
     */
    public FasRunner(Graph graph, Parameters params) {
        super(graph, params);
    }

    /**
     * Constucts a wrapper for the given EdgeListGraph.
     */
    public FasRunner(GraphWrapper graphWrapper, Parameters params) {
        super(graphWrapper.getGraph(), params);
    }

    /**
     * Constucts a wrapper for the given EdgeListGraph.
     */
    public FasRunner(GraphSource graphWrapper, Parameters params, KnowledgeBoxModel knowledgeBoxModel) {
        super(graphWrapper.getGraph(), params, knowledgeBoxModel);
    }

    public FasRunner(DagWrapper dagWrapper, Parameters params) {
        super(dagWrapper.getDag(), params);
    }

    public FasRunner(SemGraphWrapper dagWrapper, Parameters params) {
        super(dagWrapper.getGraph(), params);
    }

    public FasRunner(IndependenceFactsModel model, Parameters params) {
        super(model, params, null);
    }

    public FasRunner(IndependenceFactsModel model, Parameters params, KnowledgeBoxModel knowledgeBoxModel) {
        super(model, params, knowledgeBoxModel);
    }

    /**
     * Generates a simple exemplar of this class to test serialization.
     *
     * @see TetradSerializableUtils
     */
    public static FasRunner serializableInstance() {
        return new FasRunner(Dag.serializableInstance(), new Parameters());
    }

    public ImpliedOrientation getMeekRules() {
        MeekRules rules = new MeekRules();
        rules.setAggressivelyPreventCycles(this.isAggressivelyPreventCycles());
        rules.setKnowledge((IKnowledge) getParams().get("knowledge", new Knowledge2()));
        return rules;
    }

    @Override
    public String getAlgorithmName() {
        return "FAS";
    }

    //===================PUBLIC METHODS OVERRIDING ABSTRACT================//

    public void execute() {
        IKnowledge knowledge = (IKnowledge) getParams().get("knowledge", new Knowledge2());
        int depth = getParams().getInt("depth", -1);
        Graph graph = new EdgeListGraph(getIndependenceTest().getVariables());

        Fas fas = new Fas(getIndependenceTest());
        fas.setKnowledge(knowledge);
        fas.setDepth(depth);
        graph = fas.search();

        System.out.println(graph);

        for (Node node : graph.getNodes()) {
            System.out.println(node + " " + graph.getAdjacentNodes(node).size());
        }

        if (getSourceGraph() != null) {
            GraphUtils.arrangeBySourceGraph(graph, getSourceGraph());
        } else if (knowledge.isDefaultToKnowledgeLayout()) {
            SearchGraphUtils.arrangeByKnowledgeTiers(graph, knowledge);
        } else {
            GraphUtils.circleLayout(graph, 200, 200, 150);
        }

        setResultGraph(graph);
    }

    public IndependenceTest getIndependenceTest() {
        Object dataModel = getDataModel();

        if (dataModel == null) {
            dataModel = getSourceGraph();
        }

        IndTestType testType = (IndTestType) (getParams()).get("indTestType", IndTestType.FISHER_Z);
        return new IndTestChooser().getTest(dataModel, getParams(), testType);
    }

    public Graph getGraph() {
        return getResultGraph();
    }

    /**
     * @return the names of the triple classifications. Coordinates with getTriplesList.
     */
    public List getTriplesClassificationTypes() {
        return new ArrayList<>();
    }

    /**
     * @return the list of triples corresponding to getTripleClassificationNames
     * for the given node.
     */
    public List> getTriplesLists(Node node) {
        return new ArrayList<>();
    }

    public boolean supportsKnowledge() {
        return true;
    }

    //========================== Private Methods ===============================//

    private boolean isAggressivelyPreventCycles() {
        Parameters params = getParams();
        if (params != null) {
            return params.getBoolean("aggressivelyPreventCycles", false);
        }
        return false;
    }

}









© 2015 - 2025 Weber Informatics LLC | Privacy Policy