edu.cmu.tetradapp.model.FasRunner Maven / Gradle / Ivy
///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below. //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, //
// 2007, 2008, 2009, 2010, 2014, 2015, 2022 by Peter Spirtes, Richard //
// Scheines, Joseph Ramsey, and Clark Glymour. //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation; either version 2 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program; if not, write to the Free Software //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA //
///////////////////////////////////////////////////////////////////////////////
package edu.cmu.tetradapp.model;
import edu.cmu.tetrad.data.IKnowledge;
import edu.cmu.tetrad.data.Knowledge2;
import edu.cmu.tetrad.graph.*;
import edu.cmu.tetrad.search.*;
import edu.cmu.tetrad.util.Parameters;
import edu.cmu.tetrad.util.TetradSerializableUtils;
import java.util.ArrayList;
import java.util.List;
/**
* Extends AbstractAlgorithmRunner to produce a wrapper for the PC algorithm.
*
* @author Joseph Ramsey
*/
public class FasRunner extends AbstractAlgorithmRunner
implements IndTestProducer {
static final long serialVersionUID = 23L;
private Graph externalGraph;
//============================CONSTRUCTORS============================//
/**
* Constructs a wrapper for the given DataWrapper. The DataWrapper must
* contain a DataSet that is either a DataSet or a DataSet or a DataList
* containing either a DataSet or a DataSet as its selected model.
*/
public FasRunner(DataWrapper dataWrapper, Parameters params) {
super(dataWrapper, params, null);
}
public FasRunner(DataWrapper dataWrapper, Parameters params, KnowledgeBoxModel knowledgeBoxModel) {
super(dataWrapper, params, knowledgeBoxModel);
}
// Starts PC from the given graph.
public FasRunner(DataWrapper dataWrapper, GraphWrapper graphWrapper, Parameters params) {
super(dataWrapper, params, null);
this.externalGraph = graphWrapper.getGraph();
}
public FasRunner(DataWrapper dataWrapper, GraphWrapper graphWrapper, Parameters params, KnowledgeBoxModel knowledgeBoxModel) {
super(dataWrapper, params, knowledgeBoxModel);
this.externalGraph = graphWrapper.getGraph();
}
/**
* Constucts a wrapper for the given EdgeListGraph.
*/
public FasRunner(Graph graph, Parameters params) {
super(graph, params);
}
/**
* Constucts a wrapper for the given EdgeListGraph.
*/
public FasRunner(GraphWrapper graphWrapper, Parameters params) {
super(graphWrapper.getGraph(), params);
}
/**
* Constucts a wrapper for the given EdgeListGraph.
*/
public FasRunner(GraphSource graphWrapper, Parameters params, KnowledgeBoxModel knowledgeBoxModel) {
super(graphWrapper.getGraph(), params, knowledgeBoxModel);
}
public FasRunner(DagWrapper dagWrapper, Parameters params) {
super(dagWrapper.getDag(), params);
}
public FasRunner(SemGraphWrapper dagWrapper, Parameters params) {
super(dagWrapper.getGraph(), params);
}
public FasRunner(IndependenceFactsModel model, Parameters params) {
super(model, params, null);
}
public FasRunner(IndependenceFactsModel model, Parameters params, KnowledgeBoxModel knowledgeBoxModel) {
super(model, params, knowledgeBoxModel);
}
/**
* Generates a simple exemplar of this class to test serialization.
*
* @see TetradSerializableUtils
*/
public static FasRunner serializableInstance() {
return new FasRunner(Dag.serializableInstance(), new Parameters());
}
public ImpliedOrientation getMeekRules() {
MeekRules rules = new MeekRules();
rules.setAggressivelyPreventCycles(this.isAggressivelyPreventCycles());
rules.setKnowledge((IKnowledge) getParams().get("knowledge", new Knowledge2()));
return rules;
}
@Override
public String getAlgorithmName() {
return "FAS";
}
//===================PUBLIC METHODS OVERRIDING ABSTRACT================//
public void execute() {
IKnowledge knowledge = (IKnowledge) getParams().get("knowledge", new Knowledge2());
int depth = getParams().getInt("depth", -1);
Graph graph = new EdgeListGraph(getIndependenceTest().getVariables());
Fas fas = new Fas(getIndependenceTest());
fas.setKnowledge(knowledge);
fas.setDepth(depth);
graph = fas.search();
System.out.println(graph);
for (Node node : graph.getNodes()) {
System.out.println(node + " " + graph.getAdjacentNodes(node).size());
}
if (getSourceGraph() != null) {
GraphUtils.arrangeBySourceGraph(graph, getSourceGraph());
} else if (knowledge.isDefaultToKnowledgeLayout()) {
SearchGraphUtils.arrangeByKnowledgeTiers(graph, knowledge);
} else {
GraphUtils.circleLayout(graph, 200, 200, 150);
}
setResultGraph(graph);
}
public IndependenceTest getIndependenceTest() {
Object dataModel = getDataModel();
if (dataModel == null) {
dataModel = getSourceGraph();
}
IndTestType testType = (IndTestType) (getParams()).get("indTestType", IndTestType.FISHER_Z);
return new IndTestChooser().getTest(dataModel, getParams(), testType);
}
public Graph getGraph() {
return getResultGraph();
}
/**
* @return the names of the triple classifications. Coordinates with getTriplesList.
*/
public List getTriplesClassificationTypes() {
return new ArrayList<>();
}
/**
* @return the list of triples corresponding to getTripleClassificationNames
* for the given node.
*/
public List> getTriplesLists(Node node) {
return new ArrayList<>();
}
public boolean supportsKnowledge() {
return true;
}
//========================== Private Methods ===============================//
private boolean isAggressivelyPreventCycles() {
Parameters params = getParams();
if (params != null) {
return params.getBoolean("aggressivelyPreventCycles", false);
}
return false;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy