edu.cmu.tetradapp.model.ImpliedCovarianceDataAllWrapper Maven / Gradle / Ivy
///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below. //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, //
// 2007, 2008, 2009, 2010, 2014, 2015, 2022 by Peter Spirtes, Richard //
// Scheines, Joseph Ramsey, and Clark Glymour. //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation; either version 2 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program; if not, write to the Free Software //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA //
///////////////////////////////////////////////////////////////////////////////
package edu.cmu.tetradapp.model;
import edu.cmu.tetrad.data.CovarianceMatrix;
import edu.cmu.tetrad.data.LogDataUtils;
import edu.cmu.tetrad.graph.Node;
import edu.cmu.tetrad.sem.SemEstimator;
import edu.cmu.tetrad.sem.SemIm;
import edu.cmu.tetrad.util.Matrix;
import edu.cmu.tetrad.util.Parameters;
import edu.cmu.tetrad.util.TetradSerializableUtils;
import java.util.List;
/**
* Wraps a data model so that a random sample will automatically be drawn on
* construction from a SemIm. Includes latents.
*
* @author Joseph Ramsey [email protected]
*/
public class ImpliedCovarianceDataAllWrapper extends DataWrapper {
static final long serialVersionUID = 23L;
private SemIm semIm;
//==============================CONSTRUCTORS=============================//
public ImpliedCovarianceDataAllWrapper(SemEstimatorWrapper wrapper, Parameters params) {
SemEstimator semEstimator = wrapper.getSemEstimator();
SemIm semIm1 = semEstimator.getEstimatedSem();
if (semIm1 != null) {
Matrix matrix2D = semIm1.getImplCovar(true);
int sampleSize = semIm1.getSampleSize();
List variables = wrapper.getSemEstimator().getEstimatedSem().getSemPm().getVariableNodes();
CovarianceMatrix cov = new CovarianceMatrix(variables, matrix2D, sampleSize);
setDataModel(cov);
setSourceGraph(wrapper.getSemEstimator().getEstimatedSem().getSemPm().getGraph());
this.semIm = wrapper.getEstimatedSemIm();
}
LogDataUtils.logDataModelList("Data simulated from a linear structural equation model.", getDataModelList());
}
public SemIm getSemIm() {
return this.semIm;
}
/**
* Generates a simple exemplar of this class to test serialization.
*
* @see TetradSerializableUtils
*/
public static PcRunner serializableInstance() {
return PcRunner.serializableInstance();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy