edu.cmu.tetradapp.model.JunctionTreeWrapper Maven / Gradle / Ivy
/*
* Copyright (C) 2020 University of Pittsburgh.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
package edu.cmu.tetradapp.model;
import edu.cmu.tetrad.bayes.*;
import edu.cmu.tetrad.data.DiscreteVariable;
import edu.cmu.tetrad.graph.Node;
import edu.cmu.tetrad.session.SessionModel;
import edu.cmu.tetrad.util.NumberFormatUtil;
import edu.cmu.tetrad.util.Parameters;
import edu.cmu.tetrad.util.TetradLogger;
import edu.cmu.tetrad.util.Unmarshallable;
import java.text.NumberFormat;
/**
* Jan 21, 2020 1:27:44 PM
*
* @author Kevin V. Bui ([email protected])
*/
public class JunctionTreeWrapper implements SessionModel, UpdaterWrapper, Unmarshallable {
private static final long serialVersionUID = 23L;
private JunctionTreeUpdater bayesUpdater;
private String name;
private Parameters params;
public JunctionTreeWrapper(BayesImWrapper wrapper, Parameters params) {
if (wrapper == null) {
throw new NullPointerException();
}
BayesIm bayesIm = wrapper.getBayesIm();
setup(bayesIm, params);
}
public JunctionTreeWrapper(DirichletBayesImWrapper wrapper, Parameters params) {
if (wrapper == null) {
throw new NullPointerException();
}
DirichletBayesIm bayesIm = wrapper.getDirichletBayesIm();
setup(bayesIm, params);
}
public JunctionTreeWrapper(BayesEstimatorWrapper wrapper, Parameters params) {
if (wrapper == null) {
throw new NullPointerException();
}
BayesIm bayesIm = wrapper.getEstimatedBayesIm();
setup(bayesIm, params);
}
public JunctionTreeWrapper(DirichletEstimatorWrapper wrapper, Parameters params) {
if (wrapper == null) {
throw new NullPointerException();
}
DirichletBayesIm bayesIm = wrapper.getEstimatedBayesIm();
setup(bayesIm, params);
}
public JunctionTreeWrapper(EmBayesEstimatorWrapper wrapper, Parameters params) {
if (wrapper == null) {
throw new NullPointerException();
}
BayesIm bayesIm = wrapper.getEstimateBayesIm();
setup(bayesIm, params);
}
private void setup(BayesIm bayesIm, Parameters params) {
TetradLogger.getInstance().setConfigForClass(this.getClass());
this.params = params;
if (params.get("evidence", null) == null || ((Evidence) params.get("evidence", null)).isIncompatibleWith(bayesIm)) {
this.bayesUpdater = new JunctionTreeUpdater(bayesIm);
} else {
this.bayesUpdater = new JunctionTreeUpdater(bayesIm,
(Evidence) params.get("evidence", null));
}
Node node = (Node) getParams().get("variable", null);
if (node != null) {
NumberFormat nf = NumberFormatUtil.getInstance().getNumberFormat();
TetradLogger.getInstance().log("info", "\nRow Summing Exact Updater");
String nodeName = node.getName();
int nodeIndex = bayesIm.getNodeIndex(bayesIm.getNode(nodeName));
double[] priors = getBayesUpdater().calculatePriorMarginals(nodeIndex);
double[] marginals = getBayesUpdater().calculateUpdatedMarginals(nodeIndex);
TetradLogger.getInstance().log("details", "\nVariable = " + nodeName);
TetradLogger.getInstance().log("details", "\nEvidence:");
Evidence evidence = (Evidence) getParams().get("evidence", null);
Proposition proposition = evidence.getProposition();
for (int i = 0; i < proposition.getNumVariables(); i++) {
Node variable = proposition.getVariableSource().getVariables().get(i);
int category = proposition.getSingleCategory(i);
if (category != -1) {
TetradLogger.getInstance().log("details", "\t" + variable + " = " + category);
}
}
TetradLogger.getInstance().log("details", "\nCat.\tPrior\tMarginal");
for (int i = 0; i < priors.length; i++) {
TetradLogger.getInstance().log("details", category(evidence, nodeName, i) + "\t"
+ nf.format(priors[i]) + "\t" + nf.format(marginals[i]));
}
}
TetradLogger.getInstance().reset();
}
private DiscreteVariable discreteVariable(Evidence evidence, String nodeName) {
return evidence.getVariable(nodeName);
}
private String category(Evidence evidence, String nodeName, int i) {
DiscreteVariable variable = discreteVariable(evidence, nodeName);
return variable.getCategory(i);
}
@Override
public String getName() {
return this.name;
}
@Override
public void setName(String name) {
this.name = name;
}
@Override
public Parameters getParams() {
return this.params;
}
@Override
public ManipulatingBayesUpdater getBayesUpdater() {
return this.bayesUpdater;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy