All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.cmu.tetradapp.editor.BayesEstimatorNodeEditingTable Maven / Gradle / Ivy

The newest version!
///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below.       //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,       //
// 2007, 2008, 2009, 2010, 2014, 2015, 2022 by Peter Spirtes, Richard        //
// Scheines, Joseph Ramsey, and Clark Glymour.                               //
//                                                                           //
// This program is free software; you can redistribute it and/or modify      //
// it under the terms of the GNU General Public License as published by      //
// the Free Software Foundation; either version 2 of the License, or         //
// (at your option) any later version.                                       //
//                                                                           //
// This program is distributed in the hope that it will be useful,           //
// but WITHOUT ANY WARRANTY; without even the implied warranty of            //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             //
// GNU General Public License for more details.                              //
//                                                                           //
// You should have received a copy of the GNU General Public License         //
// along with this program; if not, write to the Free Software               //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA //
///////////////////////////////////////////////////////////////////////////////

package edu.cmu.tetradapp.editor;

import edu.cmu.tetrad.bayes.BayesIm;
import edu.cmu.tetrad.bayes.BayesPm;
import edu.cmu.tetrad.graph.Node;
import edu.cmu.tetrad.util.JOptionUtils;
import edu.cmu.tetrad.util.NumberFormatUtil;
import org.apache.commons.math3.util.FastMath;
import org.jetbrains.annotations.NotNull;

import javax.swing.*;
import javax.swing.table.AbstractTableModel;
import javax.swing.table.TableCellEditor;
import javax.swing.table.TableColumn;
import javax.swing.table.TableModel;
import java.awt.*;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.beans.PropertyChangeListener;
import java.beans.PropertyChangeSupport;
import java.text.NumberFormat;

/**
 * This is the JTable which displays the getModel parameter set (an Model).
 *
 * @author josephramsey
 */
class BayesEstimatorNodeEditingTable extends JTable {
    private int focusRow;
    private int focusCol;
    private int lastX;
    private int lastY;

    /**
     * Constructs a new editing table from a given editing table model.
     *
     * @param node    a {@link edu.cmu.tetrad.graph.Node} object
     * @param bayesIm a {@link edu.cmu.tetrad.bayes.BayesIm} object
     */
    public BayesEstimatorNodeEditingTable(Node node, BayesIm bayesIm) {
        if (node == null) {
            return;
        }

        if (bayesIm == null) {
            throw new NullPointerException();
        }

        if (bayesIm.getNodeIndex(node) < 0) {
            throw new IllegalArgumentException("Node " + node +
                                               " is not a node" + " for BayesIm " + bayesIm + ".");
        }

        Model model = new Model(node, bayesIm, this);
        model.addPropertyChangeListener(evt -> {
            if ("modelChanged".equals(evt.getPropertyName())) {
                firePropertyChange("modelChanged", null, null);
            }
        });
        setModel(model);

        setDefaultEditor(Number.class, new NumberCellEditor());
        setDefaultRenderer(Number.class, new NumberCellRenderer());
        getTableHeader().setReorderingAllowed(false);
        getTableHeader().setResizingAllowed(true);
        setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
        setCellSelectionEnabled(true);

        ListSelectionModel rowSelectionModel = getSelectionModel();

        rowSelectionModel.addListSelectionListener(e -> {
            ListSelectionModel m = (ListSelectionModel) (e.getSource());
            setFocusRow(m.getAnchorSelectionIndex());
        });

        ListSelectionModel columnSelectionModel = getColumnModel()
                .getSelectionModel();

        columnSelectionModel.addListSelectionListener(
                e -> {
                    ListSelectionModel m =
                            (ListSelectionModel) (e.getSource());
                    setFocusColumn(m.getAnchorSelectionIndex());
                });

        addMouseListener(new MouseAdapter() {
            public void mousePressed(MouseEvent e) {
                if (SwingUtilities.isRightMouseButton(e) || e.isControlDown()) {
                    showPopup(e);
                }
            }
        });

        setFocusRow(0);
        setFocusColumn(0);
    }

    /**
     * 

createDefaultColumnsFromModel.

*/ public void createDefaultColumnsFromModel() { super.createDefaultColumnsFromModel(); if (getModel() instanceof Model model) { FontMetrics fontMetrics = getFontMetrics(getFont()); for (int i = 0; i < model.getColumnCount(); i++) { TableColumn column = getColumnModel().getColumn(i); String columnName = model.getColumnName(i); int currentWidth = column.getPreferredWidth(); if (columnName != null) { int minimumWidth = fontMetrics.stringWidth(columnName) + 8; if (minimumWidth > currentWidth) { column.setPreferredWidth(minimumWidth); } } } } } private void showPopup(MouseEvent e) { JPopupMenu popup = new JPopupMenu(); JMenuItem randomizeRow = new JMenuItem("Randomize this row"); JMenuItem randomizeIncompleteRows = new JMenuItem("Randomize incomplete rows in table"); JMenuItem randomizeEntireTable = new JMenuItem("Randomize entire table"); JMenuItem randomizeAllTables = new JMenuItem("Randomize all tables"); JMenuItem clearRow = new JMenuItem("Clear this row"); JMenuItem clearEntireTable = new JMenuItem("Clear entire table"); randomizeRow.addActionListener(e1 -> { int nodeIndex = getEditingTableModel().getNodeIndex(); BayesEstimatorNodeEditingTable editingTable = BayesEstimatorNodeEditingTable.this; TableCellEditor cellEditor = editingTable.getCellEditor(); if (cellEditor != null) { cellEditor.cancelCellEditing(); } Point point = new Point(getLastX(), getLastY()); int rowIndex = editingTable.rowAtPoint(point); BayesIm bayesIm = getBayesIm(); bayesIm.randomizeRow(nodeIndex, rowIndex); getEditingTableModel().fireTableDataChanged(); firePropertyChange("modelChanged", null, null); }); randomizeIncompleteRows.addActionListener(e12 -> { int nodeIndex = getEditingTableModel().getNodeIndex(); BayesIm bayesIm = getBayesIm(); if (!existsIncompleteRow(bayesIm, nodeIndex)) { JOptionPane.showMessageDialog(JOptionUtils.centeringComp(), "There are no incomplete rows in this table."); return; } BayesEstimatorNodeEditingTable editingTable = BayesEstimatorNodeEditingTable.this; TableCellEditor cellEditor = editingTable.getCellEditor(); if (cellEditor != null) { cellEditor.cancelCellEditing(); } bayesIm.randomizeIncompleteRows(nodeIndex); getEditingTableModel().fireTableDataChanged(); firePropertyChange("modelChanged", null, null); }); randomizeEntireTable.addActionListener(e13 -> { int nodeIndex = getEditingTableModel().getNodeIndex(); BayesIm bayesIm = getBayesIm(); if (existsCompleteRow(bayesIm, nodeIndex)) { int ret = JOptionPane.showConfirmDialog( JOptionUtils.centeringComp(), "This will modify all values in the table. " + "Continue?", "Warning", JOptionPane.YES_NO_OPTION); if (ret == JOptionPane.NO_OPTION) { return; } } BayesEstimatorNodeEditingTable editingTable = BayesEstimatorNodeEditingTable.this; TableCellEditor cellEditor = editingTable.getCellEditor(); if (cellEditor != null) { cellEditor.cancelCellEditing(); } bayesIm.randomizeTable(nodeIndex); getEditingTableModel().fireTableDataChanged(); firePropertyChange("modelChanged", null, null); }); randomizeAllTables.addActionListener(e14 -> { int ret = JOptionPane.showConfirmDialog( JOptionUtils.centeringComp(), "This will modify all values in the entire Bayes model! " + "Continue?", "Warning", JOptionPane.YES_NO_OPTION); if (ret == JOptionPane.NO_OPTION) { return; } BayesIm bayesIm = getBayesIm(); for (int nodeIndex = 0; nodeIndex < getBayesIm().getNumNodes(); nodeIndex++) { BayesEstimatorNodeEditingTable editingTable = BayesEstimatorNodeEditingTable.this; TableCellEditor cellEditor = editingTable.getCellEditor(); if (cellEditor != null) { cellEditor.cancelCellEditing(); } bayesIm.randomizeTable(nodeIndex); getEditingTableModel().fireTableDataChanged(); firePropertyChange("modelChanged", null, null); } }); clearRow.addActionListener(e15 -> { int nodeIndex = getEditingTableModel().getNodeIndex(); BayesEstimatorNodeEditingTable editingTable = BayesEstimatorNodeEditingTable.this; TableCellEditor cellEditor = editingTable.getCellEditor(); if (cellEditor != null) { cellEditor.cancelCellEditing(); } Point point = new Point(getLastX(), getLastY()); int rowIndex = editingTable.rowAtPoint(point); BayesIm bayesIm = getBayesIm(); bayesIm.clearRow(nodeIndex, rowIndex); getEditingTableModel().fireTableRowsUpdated(rowIndex, rowIndex); firePropertyChange("modelChanged", null, null); }); clearEntireTable.addActionListener(e16 -> { int nodeIndex = getEditingTableModel().getNodeIndex(); BayesIm bayesIm = getBayesIm(); if (existsCompleteRow(bayesIm, nodeIndex)) { int ret = JOptionPane.showConfirmDialog( JOptionUtils.centeringComp(), "This will delete all values in the table. " + "Continue?", "Warning", JOptionPane.YES_NO_OPTION); if (ret == JOptionPane.NO_OPTION) { return; } } BayesEstimatorNodeEditingTable editingTable = BayesEstimatorNodeEditingTable.this; TableCellEditor cellEditor = editingTable.getCellEditor(); if (cellEditor != null) { cellEditor.cancelCellEditing(); } bayesIm.clearTable(nodeIndex); getEditingTableModel().fireTableDataChanged(); firePropertyChange("modelChanged", null, null); }); popup.add(randomizeRow); popup.add(randomizeIncompleteRows); popup.add(randomizeEntireTable); popup.add(randomizeAllTables); popup.addSeparator(); popup.add(clearRow); popup.add(clearEntireTable); this.lastX = e.getX(); this.lastY = e.getY(); popup.show((Component) e.getSource(), e.getX(), e.getY()); } private boolean existsCompleteRow(BayesIm bayesIm, int nodeIndex) { boolean existsCompleteRow = false; for (int rowIndex = 0; rowIndex < bayesIm.getNumRows(nodeIndex); rowIndex++) { if (!bayesIm.isIncomplete(nodeIndex, rowIndex)) { existsCompleteRow = true; break; } } return existsCompleteRow; } private boolean existsIncompleteRow(BayesIm bayesIm, int nodeIndex) { boolean existsCompleteRow = false; for (int rowIndex = 0; rowIndex < bayesIm.getNumRows(nodeIndex); rowIndex++) { if (bayesIm.isIncomplete(nodeIndex, rowIndex)) { existsCompleteRow = true; break; } } return existsCompleteRow; } /** * {@inheritDoc} */ public void setModel(@NotNull TableModel model) { super.setModel(model); } /** * Sets the focus row to the anchor row currently being selected. */ private void setFocusRow(int row) { if (row == -1) { return; } Model editingTableModel = (Model) getModel(); int failedRow = editingTableModel.getFailedRow(); if (failedRow != -1) { row = failedRow; editingTableModel.resetFailedRow(); } this.focusRow = row; if (this.focusCol < getRowCount()) { setRowSelectionInterval(this.focusRow, this.focusRow); editCellAt(this.focusRow, this.focusCol); } } /** * Sets the focus column to the anchor column currently being selected. */ private void setFocusColumn(int col) { Model editingTableModel = (Model) getModel(); int failedCol = editingTableModel.getFailedCol(); if (failedCol != -1) { col = failedCol; editingTableModel.resetFailedCol(); } if (col < getNumParents()) { col = getNumParents(); } this.focusCol = FastMath.max(col, getNumParents()); if (this.focusCol >= getNumParents() && this.focusCol < getColumnCount()) { setColumnSelectionInterval(this.focusCol, this.focusCol); editCellAt(this.focusRow, this.focusCol); } } private int getNumParents() { Model editingTableModel = (Model) getModel(); BayesIm bayesIm = editingTableModel.getBayesIm(); int nodeIndex = editingTableModel.getNodeIndex(); return bayesIm.getNumParents(nodeIndex); } private Model getEditingTableModel() { return (Model) getModel(); } private BayesIm getBayesIm() { return getEditingTableModel().getBayesIm(); } private int getLastX() { return this.lastX; } private int getLastY() { return this.lastY; } /** * The abstract table model containing the parameters to be edited for a given node. Parameters for a given node N * with parents P1, P2, ..., are of the form P(N=v0 | P1=v1, P2=v2, ..., Pn = vn). The first n columns of this * table for each row contains a combination of values for (P1, P2, ... Pn), such as (v0, v1, ..., vn). If there * are m values for N, the next m columns contain numbers in the range [0.0, 1.0] representing conditional * probabilities that N takes on that corresponding value given this combination of parent values. These * conditional probabilities may be edited. As they are being edited for a given row, the only condition is that * they be greater than or equal to 0.0. * * @author josephramsey */ static final class Model extends AbstractTableModel { /** * The BayesIm being edited. */ private final BayesIm bayesIm; /** * This table can only display conditional probabilities for one node at at time. This is the node. */ private final int nodeIndex; private int failedRow = -1; private int failedCol = -1; private PropertyChangeSupport pcs; /** * Constructs a new editing table model for a given a node in a given bayesIm. */ public Model(Node node, BayesIm bayesIm, JComponent messageAnchor) { if (node == null) { throw new NullPointerException("Node must not be null."); } if (bayesIm == null) { throw new NullPointerException("Bayes IM must not be null."); } if (messageAnchor == null) { throw new NullPointerException( "Message anchor must not be null."); } this.bayesIm = bayesIm; this.nodeIndex = bayesIm.getNodeIndex(node); } /** * @return the name of the given column. */ public String getColumnName(int col) { Node node = getBayesIm().getNode(getNodeIndex()); if (col < getBayesIm().getNumParents(getNodeIndex())) { int parent = getBayesIm().getParent(getNodeIndex(), col); return getBayesIm().getNode(parent).getName(); } else { int numNodeVals = getBayesIm().getNumColumns(getNodeIndex()); int valIndex = col - getBayesIm().getNumParents(getNodeIndex()); if (valIndex < numNodeVals) { String value = getBayesIm().getBayesPm().getCategory(node, valIndex); return node.getName() + "=" + value; } return null; } } /** * @return the number of rows in the table. */ public int getRowCount() { return getBayesIm().getNumRows(getNodeIndex()); } /** * @return the total number of columns in the table, which is equal to the number of parents for the node plus * the number of values for the node. */ public int getColumnCount() { int numParents = getBayesIm().getNumParents(getNodeIndex()); int numColumns = getBayesIm().getNumColumns(getNodeIndex()); return numParents + numColumns; } /** * @return the value of the table at the given row and column. The type of value returned depends on the column. * If there are n parent values and m node values, then the first n columns have String values representing the * values of the parent nodes for a particular combination (row) and the next m columns have Double values * representing conditional probabilities of node values given parent value combinations. */ public Object getValueAt(int tableRow, int tableCol) { int[] parentVals = getBayesIm().getParentValues(getNodeIndex(), tableRow); if (tableCol < parentVals.length) { Node columnNode = getBayesIm().getNode( getBayesIm().getParent(getNodeIndex(), tableCol)); BayesPm bayesPm = getBayesIm().getBayesPm(); return bayesPm.getCategory(columnNode, parentVals[tableCol]); } else { int colIndex = tableCol - parentVals.length; if (colIndex < getBayesIm().getNumColumns(getNodeIndex())) { return getBayesIm().getProbability(getNodeIndex(), tableRow, colIndex); } return "null"; } } /** * Determines whether a cell is in the column range to allow for editing. */ public boolean isCellEditable(int row, int col) { return !(col < getBayesIm().getNumParents(getNodeIndex())); } /** * Sets the value of the cell at (row, col) to 'aValue'. */ public void setValueAt(Object aValue, int row, int col) { int numParents = getBayesIm().getNumParents(getNodeIndex()); int colIndex = col - numParents; if ("".equals(aValue) || aValue == null) { getBayesIm().setProbability(getNodeIndex(), row, colIndex, Double.NaN); fireTableRowsUpdated(row, row); getPcs().firePropertyChange("modelChanged", null, null); return; } try { NumberFormat nf = NumberFormatUtil.getInstance().getNumberFormat(); double probability = Double.parseDouble((String) aValue); // probability = Double.parseDouble(nf.format(probability)); double sumInRow = sumInRow(row, colIndex) + probability; double oldProbability = getBayesIm().getProbability(this.nodeIndex, row, colIndex); if (!Double.isNaN(oldProbability)) { oldProbability = Double.parseDouble(nf.format(oldProbability)); } if (probability == oldProbability) { return; } if (probabilityOutOfRange(probability)) { JOptionPane.showMessageDialog(JOptionUtils.centeringComp(), "Probabilities must be in range [0.0, 1.0]."); this.failedRow = row; this.failedCol = col; } else if (numNanCols(row) == 0) { if (sumInRow < 0.99995 || sumInRow > 1.00005) { emptyRow(row); getBayesIm().setProbability(getNodeIndex(), row, colIndex, probability); if (this.bayesIm.getNumColumns((this.nodeIndex)) == 2) { fillInSingleRemainingColumn(row); } fireTableRowsUpdated(row, row); getPcs().firePropertyChange("modelChanged", null, null); } } else if (sumInRow > 1.00005) { JOptionPane.showMessageDialog(JOptionUtils.centeringComp(), "Sum of probabilities in row must not exceed 1.0."); this.failedRow = row; this.failedCol = col; } else { getBayesIm().setProbability(getNodeIndex(), row, colIndex, probability); fillInSingleRemainingColumn(row); fillInZerosIfSumIsOne(row); fireTableRowsUpdated(row, row); getPcs().firePropertyChange("modelChanged", null, null); } } catch (NumberFormatException e) { JOptionPane.showMessageDialog(JOptionUtils.centeringComp(), "Could not interpret '" + aValue + "'"); this.failedRow = row; this.failedCol = col; } } public void addPropertyChangeListener(PropertyChangeListener l) { getPcs().addPropertyChangeListener(l); } private PropertyChangeSupport getPcs() { if (this.pcs == null) { this.pcs = new PropertyChangeSupport(this); } return this.pcs; } private void fillInSingleRemainingColumn(int rowIndex) { int leftOverColumn = uniqueNanCol(rowIndex); if (leftOverColumn != -1) { double difference = 1.0 - sumInRow(rowIndex, leftOverColumn); getBayesIm().setProbability(getNodeIndex(), rowIndex, leftOverColumn, difference); } } private void fillInZerosIfSumIsOne(int rowIndex) { double sum = sumInRow(rowIndex, -1); if (sum > 0.9995 && sum < 1.0005) { int numColumns = getBayesIm().getNumColumns(getNodeIndex()); for (int i = 0; i < numColumns; i++) { double probability = getBayesIm().getProbability( getNodeIndex(), rowIndex, i); if (Double.isNaN(probability)) { getBayesIm().setProbability(getNodeIndex(), rowIndex, i, 0.0); } } } } private boolean probabilityOutOfRange(double value) { return value < 0.0 || value > 1.0; } private int uniqueNanCol(int rowIndex) { int numNanCols = 0; int lastNanCol = -1; for (int i = 0; i < getBayesIm().getNumColumns(getNodeIndex()); i++) { double probability = getBayesIm().getProbability(getNodeIndex(), rowIndex, i); if (Double.isNaN(probability)) { numNanCols++; lastNanCol = i; } } return numNanCols == 1 ? lastNanCol : -1; } private int numNanCols(int rowIndex) { int numNanCols = 0; for (int i = 0; i < getBayesIm().getNumColumns(getNodeIndex()); i++) { double probability = getBayesIm().getProbability(getNodeIndex(), rowIndex, i); if (Double.isNaN(probability)) { numNanCols++; } } return numNanCols; } private void emptyRow(int rowIndex) { for (int i = 0; i < getBayesIm().getNumColumns(getNodeIndex()); i++) { getBayesIm().setProbability(getNodeIndex(), rowIndex, i, Double.NaN); } } private double sumInRow(int rowIndex, int skipCol) { double sum = 0.0; for (int i = 0; i < getBayesIm().getNumColumns(getNodeIndex()); i++) { double probability = getBayesIm().getProbability(getNodeIndex(), rowIndex, i); if (i != skipCol && !Double.isNaN(probability)) { NumberFormat nf = NumberFormatUtil.getInstance().getNumberFormat(); probability = Double.parseDouble(nf.format(probability)); sum += probability; } } return sum; } /** * @return the class of the column. */ public Class getColumnClass(int col) { boolean isParent = col < getBayesIm().getNumParents(getNodeIndex()); return isParent ? Object.class : Number.class; } public BayesIm getBayesIm() { return this.bayesIm; } public int getNodeIndex() { return this.nodeIndex; } public int getFailedRow() { return this.failedRow; } public int getFailedCol() { return this.failedCol; } public void resetFailedRow() { this.failedRow = -1; } public void resetFailedCol() { this.failedCol = -1; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy