All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.cmu.tetradapp.editor.LogisticRegressionEditor Maven / Gradle / Ivy

The newest version!
///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below.       //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,       //
// 2007, 2008, 2009, 2010, 2014, 2015, 2022 by Peter Spirtes, Richard        //
// Scheines, Joseph Ramsey, and Clark Glymour.                               //
//                                                                           //
// This program is free software; you can redistribute it and/or modify      //
// it under the terms of the GNU General Public License as published by      //
// the Free Software Foundation; either version 2 of the License, or         //
// (at your option) any later version.                                       //
//                                                                           //
// This program is distributed in the hope that it will be useful,           //
// but WITHOUT ANY WARRANTY; without even the implied warranty of            //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             //
// GNU General Public License for more details.                              //
//                                                                           //
// You should have received a copy of the GNU General Public License         //
// along with this program; if not, write to the Free Software               //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA //
///////////////////////////////////////////////////////////////////////////////
package edu.cmu.tetradapp.editor;

import edu.cmu.tetrad.data.DataSet;
import edu.cmu.tetrad.data.DiscreteVariable;
import edu.cmu.tetrad.graph.Graph;
import edu.cmu.tetrad.graph.LayoutUtil;
import edu.cmu.tetrad.graph.Node;
import edu.cmu.tetrad.regression.LogisticRegression;
import edu.cmu.tetrad.util.NumberFormatUtil;
import edu.cmu.tetrad.util.Parameters;
import edu.cmu.tetrad.util.TetradLogger;
import edu.cmu.tetradapp.model.LogisticRegressionRunner;
import edu.cmu.tetradapp.workbench.GraphWorkbench;

import javax.swing.*;
import java.awt.*;
import java.text.NumberFormat;

/**
 * Allows the user to execute a logistic regression in the GUI. Contains a panel that lets the user specify a target
 * variable (which must be binary) and a list of continuous regressors, plus a tabbed pane that includes (a) a text area
 * to show the report of the logistic regression and (b) a graph workbench to show the graph of the target with
 * significant regressors from the regression as parents.
 *
 * @author josephramsey
 * @author Frank Wimberly - adapted for EM Bayes estimator and Strucural EM Bayes estimator
 * @version $Id: $Id
 */
public class LogisticRegressionEditor extends JPanel {

    private static final long serialVersionUID = 7779226528390174L;

    /**
     * Text area for display output.
     */
    private final JTextArea modelParameters;

    /**
     * The number formatter used for printing reports.
     */
    private final NumberFormat nf = NumberFormatUtil.getInstance().getNumberFormat();

    /**
     * 

Constructor for LogisticRegressionEditor.

* * @param regressionRunner a {@link edu.cmu.tetradapp.model.LogisticRegressionRunner} object */ public LogisticRegressionEditor(LogisticRegressionRunner regressionRunner) { DataSet dataSet = (DataSet) regressionRunner.getDataModel(); for (Node node : dataSet.getVariables()) { if (node instanceof DiscreteVariable v) { if (v.getNumCategories() != 2) { throw new IllegalArgumentException("Logistic regression requires a dataset in which all variables " + "are either continuous or binary."); } } } GraphWorkbench workbench = new GraphWorkbench(); this.modelParameters = new JTextArea(); JButton executeButton = new JButton("Execute"); JTabbedPane tabbedPane = new JTabbedPane(); tabbedPane.setPreferredSize(new Dimension(600, 400)); tabbedPane.add("Model", new JScrollPane(this.modelParameters)); tabbedPane.add("Output Graph", new JScrollPane(workbench)); Parameters params = regressionRunner.getParams(); RegressionParamsEditorPanel paramsPanel = new RegressionParamsEditorPanel(regressionRunner, params, regressionRunner.getDataModel(), true); Box b = Box.createVerticalBox(); Box b1 = Box.createHorizontalBox(); b1.add(paramsPanel); b1.add(Box.createHorizontalStrut(5)); b1.add(tabbedPane); b.add(b1); JPanel buttonPanel = new JPanel(); buttonPanel.add(executeButton); b.add(buttonPanel); setLayout(new BorderLayout()); add(b, BorderLayout.CENTER); int numModels = regressionRunner.getNumModels(); if (numModels > 1) { JComboBox comp = new JComboBox<>(); for (int i = 0; i < numModels; i++) { comp.addItem(i + 1); } comp.addActionListener((e) -> { Object selectedItem = comp.getSelectedItem(); if (selectedItem instanceof Integer) { regressionRunner.setModelIndex(((Integer) selectedItem) - 1); } }); comp.setMaximumSize(comp.getPreferredSize()); Box c = Box.createHorizontalBox(); c.add(new JLabel("Using model")); c.add(comp); c.add(new JLabel("from ")); c.add(new JLabel(regressionRunner.getModelSourceName())); c.add(Box.createHorizontalGlue()); add(c, BorderLayout.NORTH); } //this.modelParameters.setFont(new Font("Monospaced", Font.PLAIN, 12)); executeButton.addActionListener((e) -> { regressionRunner.setAlpha(paramsPanel.getParams().getDouble("alpha", 0.001)); regressionRunner.execute(); // modelParameters.setText(regRunner.getReport()); print(regressionRunner.getResult(), regressionRunner.getAlpha()); Graph outGraph = regressionRunner.getOutGraph(); LayoutUtil.defaultLayout(outGraph); LayoutUtil.fruchtermanReingoldLayout(outGraph); workbench.setGraph(outGraph); String message = this.modelParameters.getText(); TetradLogger.getInstance().log(message); }); } /** * {@inheritDoc} *

* Sets the name of this editor. */ @Override public void setName(String name) { String oldName = getName(); super.setName(name); this.firePropertyChange("name", oldName, getName()); } //============================== Private Methods =====================================// /** * Prints the info in the result to the text area (doesn't use the results representation). */ private void print(LogisticRegression.Result result, double alpha) { if (result == null) { return; } // print cases StringBuilder text = new StringBuilder(result.getNy0() + " cases have " + result.getTarget() + " = 0; "); text.append(result.getNy1()).append(" cases have ").append(result.getTarget()).append(" = 1.\n\n"); // print avgs/SD text.append("Var\tAvg\tSD\n"); for (int i = 1; i <= result.getNumRegressors(); i++) { text.append(result.getRegressorNames().get(i - 1)).append("\t"); text.append(this.nf.format(result.getxMeans()[i])).append("\t"); text.append(this.nf.format(result.getxStdDevs()[i])).append("\n"); } text.append("\nCoefficients and Standard Errors:\n"); text.append("Var\tCoeff.\tStdErr\tProb.\tSig.\n"); for (int i = 1; i <= result.getNumRegressors(); i++) { text.append(result.getRegressorNames().get(i - 1)).append("\t"); text.append(this.nf.format(result.getCoefs()[i])).append("\t"); text.append(this.nf.format(result.getStdErrs()[i])).append("\t"); text.append(this.nf.format(result.getProbs()[i])).append("\t"); if (result.getProbs()[i] < alpha) { text.append("*\n"); } else { text.append("\n"); } } text.append("\n\nIntercept = ").append(this.nf.format(result.getIntercept())).append("\n"); this.modelParameters.setText(text.toString()); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy