All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.cmu.tetradapp.model.AbstractAlgorithmRunner Maven / Gradle / Ivy

The newest version!
///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below.       //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,       //
// 2007, 2008, 2009, 2010, 2014, 2015, 2022 by Peter Spirtes, Richard        //
// Scheines, Joseph Ramsey, and Clark Glymour.                               //
//                                                                           //
// This program is free software; you can redistribute it and/or modify      //
// it under the terms of the GNU General Public License as published by      //
// the Free Software Foundation; either version 2 of the License, or         //
// (at your option) any later version.                                       //
//                                                                           //
// This program is distributed in the hope that it will be useful,           //
// but WITHOUT ANY WARRANTY; without even the implied warranty of            //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             //
// GNU General Public License for more details.                              //
//                                                                           //
// You should have received a copy of the GNU General Public License         //
// along with this program; if not, write to the Free Software               //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA //
///////////////////////////////////////////////////////////////////////////////

package edu.cmu.tetradapp.model;

import edu.cmu.tetrad.data.*;
import edu.cmu.tetrad.graph.EdgeListGraph;
import edu.cmu.tetrad.graph.Graph;
import edu.cmu.tetrad.graph.Node;
import edu.cmu.tetrad.graph.NodeType;
import edu.cmu.tetrad.search.utils.MeekRules;
import edu.cmu.tetrad.util.Parameters;
import edu.cmu.tetrad.util.TetradLogger;
import edu.cmu.tetrad.util.Unmarshallable;
import edu.cmu.tetradapp.session.ParamsResettable;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serial;
import java.util.*;

/**
 * Implements a stub that basic algorithm wrappers can extend if they take either a dataModel model or a workbench model
 * as parent. Contains basic methods for executing algorithm and returning results.
 *
 * @author josephramsey
 * @version $Id: $Id
 */
public abstract class AbstractAlgorithmRunner
        implements AlgorithmRunner, ParamsResettable, Unmarshallable {
    @Serial
    private static final long serialVersionUID = 23L;

    /**
     * The parameters settings.
     */
    final Map paramSettings = new LinkedHashMap<>();

    /**
     * The data wrapper.
     */
    private DataWrapper dataWrapper;

    /**
     * The name of the algorithm.
     */
    private String name;

    /**
     * The parameters.
     */
    private Parameters params;

    /**
     * The data model.
     */
    private transient DataModel dataModel;

    /**
     * The source graph.
     */
    private Graph sourceGraph;

    /**
     * The result graph.
     */
    private Graph resultGraph = new EdgeListGraph();

    /**
     * The external graph.
     */
    private Graph externalGraph;

    /**
     * The graphs.
     */
    private List graphs;

    /**
     * The all param settings.
     */
    private Map allParamSettings;

    //===========================CONSTRUCTORS===========================//

    /**
     * Constructs a wrapper for the given DataWrapper. The DatWrapper must contain a DataSet that is either a DataSet or
     * a DataSet or a DataList containing either a DataSet or a DataSet as its selected model.
     *
     * @param dataWrapper       the data wrapper
     * @param params            the parameters
     * @param knowledgeBoxModel the knowledge box model
     */
    public AbstractAlgorithmRunner(DataWrapper dataWrapper,
                                   Parameters params, KnowledgeBoxModel knowledgeBoxModel) {
        if (dataWrapper == null) {
            throw new NullPointerException();
        }
        if (params == null) {
            throw new NullPointerException();
        }

        this.params = params;
        this.sourceGraph = dataWrapper.getSourceGraph();

        DataModelList dataSource = dataWrapper.getDataModelList();

        this.dataWrapper = dataWrapper;

        //temporary workaround to get the knowledge box to coexist with the dataWrapper's knowledge
        if (knowledgeBoxModel == null) {
            getParams().set("knowledge", dataWrapper.getKnowledge());
        } else {
            getParams().set("knowledge", knowledgeBoxModel.getKnowledge());
        }
        List names = dataSource.getVariableNames();
        transferVarNamesToParams(names);
    }

    /**
     * Constructs a wrapper for the given DataWrapper. The DatWrapper must contain a DataSet that is either a DataSet or
     * a DataSet or a DataList containing either a DataSet or a DataSet as its selected model.
     *
     * @param dataWrapper       the data wrapper
     * @param params            the parameters
     * @param knowledgeBoxModel the knowledge box model
     * @param facts             the independence facts model
     */
    public AbstractAlgorithmRunner(DataWrapper dataWrapper,
                                   Parameters params, KnowledgeBoxModel knowledgeBoxModel, IndependenceFactsModel facts) {
        if (dataWrapper == null) {
            throw new NullPointerException();
        }
        if (params == null) {
            throw new NullPointerException();
        }

        this.params = params;
        this.sourceGraph = dataWrapper.getSourceGraph();

        DataModel dataSource = getSelectedDataModel(dataWrapper);

        this.dataWrapper = dataWrapper;

        //temporary workaround to get the knowledge box to coexist with the dataWrapper's knowledge
        if (knowledgeBoxModel == null) {
            getParams().set("knowledge", dataWrapper.getKnowledge());
        } else {
            getParams().set("knowledge", knowledgeBoxModel.getKnowledge());
        }

        getParams().set("independenceFacts", facts.getFacts());
        List names = dataSource.getVariableNames();
        transferVarNamesToParams(names);
    }

    /**
     * Constructs a wrapper for the given DataWrapper. The DatWrapper must contain a DataSet that is either a DataSet or
     * a DataSet or a DataList containing either a DataSet or a DataSet as its selected model.
     *
     * @param dataWrapper the data wrapper
     * @param params      the parameters
     */
    public AbstractAlgorithmRunner(DataWrapper dataWrapper, Parameters params) {
        if (dataWrapper == null) {
            throw new NullPointerException();
        }
        if (params == null) {
            throw new NullPointerException();
        }

        this.params = params;
        this.sourceGraph = dataWrapper.getSourceGraph();

        DataModel dataSource = getSelectedDataModel(dataWrapper);

        this.dataWrapper = dataWrapper;

        List names = dataSource.getVariableNames();
        transferVarNamesToParams(names);
    }

    /**
     * Constructs a wrapper for the given graph.
     *
     * @param sourceGraph the source graph
     * @param params      the parameters
     */
    public AbstractAlgorithmRunner(Graph sourceGraph, Parameters params) {
        if (sourceGraph == null) {
            throw new NullPointerException(
                    "Source graph must not be null.");
        }
        if (params == null) {
            throw new NullPointerException("Parameters must not be null.");
        }
        this.params = params;
        List names = measuredNames(sourceGraph);
        transferVarNamesToParams(names);
        this.sourceGraph = sourceGraph;
    }

    /**
     * Constructs a wrapper for the given graph.
     *
     * @param graph             the graph
     * @param params            the parameters
     * @param knowledgeBoxModel the knowledge box model
     */
    public AbstractAlgorithmRunner(Graph graph, Parameters params,
                                   KnowledgeBoxModel knowledgeBoxModel) {
        this(graph, params);
        if (knowledgeBoxModel != null) {
            getParams().set("knowledge", knowledgeBoxModel.getKnowledge());
        }
    }

    /**
     * Constructs a wrapper for the given graph.
     *
     * @param params the parameters
     * @param graphs the graphs
     */
    public AbstractAlgorithmRunner(Parameters params, Graph... graphs) {
        this.graphs = Arrays.asList(graphs);
        this.params = params;
    }

    /**
     * Constructs a wrapper for the given graph.
     *
     * @param params            the parameters
     * @param knowledgeBoxModel the knowledge box model
     * @param graphs            the graphs
     */
    public AbstractAlgorithmRunner(Parameters params, KnowledgeBoxModel knowledgeBoxModel, Graph... graphs) {
        this.graphs = Arrays.asList(graphs);
        this.params = params;
        if (knowledgeBoxModel != null) {
            getParams().set("knowledge", knowledgeBoxModel.getKnowledge());
        }
    }

    /**
     * Constructs a wrapper for the given graph.
     *
     * @param model             the model
     * @param params            the parameters
     * @param knowledgeBoxModel the knowledge box model
     */
    public AbstractAlgorithmRunner(IndependenceFactsModel model,
                                   Parameters params, KnowledgeBoxModel knowledgeBoxModel) {
        if (model == null) {
            throw new NullPointerException();
        }
        if (params == null) {
            throw new NullPointerException();
        }

        this.params = params;

        DataModel dataSource = model.getFacts();

        if (knowledgeBoxModel != null) {
            getParams().set("knowledge", knowledgeBoxModel.getKnowledge());
        }

        List names = dataSource.getVariableNames();
        transferVarNamesToParams(names);
        this.dataModel = dataSource;
    }

    /**
     * Constructs a wrapper for the given graph.
     *
     * @param graph             the graph
     * @param params            the parameters
     * @param knowledgeBoxModel the knowledge box model
     * @param facts             the independence facts model
     */
    public AbstractAlgorithmRunner(Graph graph, Parameters params,
                                   KnowledgeBoxModel knowledgeBoxModel, IndependenceFacts facts) {
        this(graph, params);
        if (knowledgeBoxModel != null) {
            getParams().set("knowledge", knowledgeBoxModel.getKnowledge());
        }
        if (facts != null) {
            getParams().set("independenceFacts", facts);
        }
    }


    //============================PUBLIC METHODS==========================//

    /**
     * Returns the graph that was the result of the algorithm's execution.
     *
     * @return a {@link edu.cmu.tetrad.graph.Graph} object
     */
    public final Graph getResultGraph() {
        return this.resultGraph;
    }

    /**
     * Sets the graph that was the result of the algorithm's execution.
     *
     * @param resultGraph a {@link edu.cmu.tetrad.graph.Graph} object
     */
    public final void setResultGraph(Graph resultGraph) {
        this.resultGraph = resultGraph;
    }

    /**
     * By default, algorithm do not support knowledge. Those that do will speak up.
     *
     * @return true if the algorithm supports knowledge.
     */
    public boolean supportsKnowledge() {
        return false;
    }

    /**
     * By default, algorithm do not support Meek rules. Those that do will speak up.
     *
     * @return null
     */
    public MeekRules getMeekRules() {
        return null;
    }

    /**
     * By default, algorithm do not support independence facts. Those that do will speak up.
     *
     * @return the external graph
     */
    public Graph getExternalGraph() {
        return this.externalGraph;
    }

    /**
     * {@inheritDoc}
     * 

* Sets the external graph for the algorithm. */ public void setExternalGraph(Graph graph) { this.externalGraph = graph; } /** * {@inheritDoc} *

* Returns the algorithm's name. */ @Override public abstract String getAlgorithmName(); /** * Returns the source graph. * * @return the source graph */ public final Graph getSourceGraph() { return this.sourceGraph; } /** * Returns the data model. * * @return the data model */ public final DataModel getDataModel() { if (this.dataWrapper != null) { DataModelList dataModelList = this.dataWrapper.getDataModelList(); if (dataModelList.size() == 1) { return dataModelList.get(0); } else { return dataModelList; } } else if (this.dataModel != null) { return this.dataModel; } else { // Do not throw an exception here! return null; } } /** * Returns the data model list. * * @return the data model list */ final DataModelList getDataModelList() { if (this.dataWrapper == null) return null; return this.dataWrapper.getDataModelList(); } /** * Returns the search parameters. * * @return the search parameters */ public final Parameters getParams() { return this.params; } /** * Returns the pameters. * * @return the parameters */ public Object getResettableParams() { return this.getParams(); } /** * {@inheritDoc} *

* Resets the parameters. */ public void resetParams(Object params) { this.params = (Parameters) params; } //===========================PRIVATE METHODS==========================// /** * Find the dataModel model. (If it's a list, take the one that's selected.) */ private DataModel getSelectedDataModel(DataWrapper dataWrapper) { DataModelList dataModelList = dataWrapper.getDataModelList(); if (dataModelList.size() > 1) { return dataModelList; } DataModel dataModel = dataWrapper.getSelectedDataModel(); if (dataModel instanceof DataSet dataSet) { if (dataSet.isDiscrete()) { return dataSet; } else if (dataSet.isContinuous()) { return dataSet; } else if (dataSet.isMixed()) { return dataSet; } throw new IllegalArgumentException("" + "This data set contains a mixture of discrete and continuous " + "
columns; there are no algorithm in Tetrad currently to " + "
search over such data sets." + ""); } else if (dataModel instanceof ICovarianceMatrix) { return dataModel; } else if (dataModel instanceof TimeSeriesData) { return dataModel; } throw new IllegalArgumentException( "Unexpected dataModel source: " + dataModel); } private List measuredNames(Graph graph) { List names = new ArrayList<>(); for (Node node : graph.getNodes()) { if (node.getNodeType() == NodeType.MEASURED) { names.add(node.getName()); } } return names; } private void transferVarNamesToParams(List names) { getParams().set("varNames", names); } /** * Writes the object to the specified ObjectOutputStream. * * @param out The ObjectOutputStream to write the object to. * @throws IOException If an I/O error occurs. */ /** * Writes the object to the specified ObjectOutputStream. * * @param out The ObjectOutputStream to write the object to. * @throws IOException If an I/O error occurs. */ @Serial private void writeObject(ObjectOutputStream out) throws IOException { try { out.defaultWriteObject(); } catch (IOException e) { TetradLogger.getInstance().log("Failed to serialize object: " + getClass().getCanonicalName() + ", " + e.getMessage()); throw e; } } /** * Reads the object from the specified ObjectInputStream. This method is used during deserialization * to restore the state of the object. * * @param in The ObjectInputStream to read the object from. * @throws IOException If an I/O error occurs. * @throws ClassNotFoundException If the class of the serialized object cannot be found. */ @Serial private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException { try { in.defaultReadObject(); } catch (IOException e) { TetradLogger.getInstance().log("Failed to deserialize object: " + getClass().getCanonicalName() + ", " + e.getMessage()); throw e; } } /** * Returns the name of the algorithm. * * @return the name */ public String getName() { return this.name; } /** * {@inheritDoc} *

* Sets the name of the algorithm. */ public void setName(String name) { this.name = name; } /** * Returns the list of graphs. * * @return the graphs */ public List getGraphs() { return this.graphs; } /** * {@inheritDoc} *

* Returns the param settings. */ @Override public Map getParamSettings() { this.paramSettings.put("Algorithm", getAlgorithmName()); return this.paramSettings; } /** * Returns all param settings. * * @return all param settings */ public Map getAllParamSettings() { return this.allParamSettings; } /** * {@inheritDoc} *

* Sets all param settings. */ public void setAllParamSettings(Map allParamSettings) { this.allParamSettings = allParamSettings; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy