All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.cmu.tetradapp.model.BayesEstimatorWrapper Maven / Gradle / Ivy

The newest version!
///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below.       //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,       //
// 2007, 2008, 2009, 2010, 2014, 2015, 2022 by Peter Spirtes, Richard        //
// Scheines, Joseph Ramsey, and Clark Glymour.                               //
//                                                                           //
// This program is free software; you can redistribute it and/or modify      //
// it under the terms of the GNU General Public License as published by      //
// the Free Software Foundation; either version 2 of the License, or         //
// (at your option) any later version.                                       //
//                                                                           //
// This program is distributed in the hope that it will be useful,           //
// but WITHOUT ANY WARRANTY; without even the implied warranty of            //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             //
// GNU General Public License for more details.                              //
//                                                                           //
// You should have received a copy of the GNU General Public License         //
// along with this program; if not, write to the Free Software               //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA //
///////////////////////////////////////////////////////////////////////////////
package edu.cmu.tetradapp.model;

import edu.cmu.tetrad.bayes.BayesIm;
import edu.cmu.tetrad.bayes.BayesPm;
import edu.cmu.tetrad.bayes.MlBayesEstimator;
import edu.cmu.tetrad.data.DataModel;
import edu.cmu.tetrad.data.DataModelList;
import edu.cmu.tetrad.data.DataSet;
import edu.cmu.tetrad.data.DataUtils;
import edu.cmu.tetrad.graph.Graph;
import edu.cmu.tetrad.graph.Node;
import edu.cmu.tetrad.graph.NodeType;
import edu.cmu.tetrad.util.Parameters;
import edu.cmu.tetrad.util.TetradLogger;
import edu.cmu.tetrad.util.TetradSerializableUtils;
import edu.cmu.tetradapp.session.SessionModel;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serial;
import java.util.ArrayList;
import java.util.List;

/**
 * Wraps a Bayes Pm for use in the Tetrad application.
 *
 * @author josephramsey
 * @version $Id: $Id
 */
public class BayesEstimatorWrapper implements SessionModel {

    @Serial
    private static final long serialVersionUID = 23L;

    /**
     * The data wrapper.
     */
    private final DataWrapper dataWrapper;

    /**
     * ' The estimated Bayes IM.
     */
    private final List bayesIms = new ArrayList<>();

    /**
     * The private final parameters variable holds the parameters for the given instance.
     * It is of type Parameters.
     */
    private final Parameters parameters;

    /**
     * The name of the Bayes Pm.
     */
    private String name;

    /**
     * The estimated Bayes IM.
     */
    private BayesIm bayesIm;

    /**
     * The data set.
     */
    private DataSet dataSet;

    /**
     * The number of models.
     */
    private int numModels;

    /**
     * The model index.
     */
    private int modelIndex;

    //=================================CONSTRUCTORS========================//

    /**
     * Constructs a new BayesEstimatorWrapper object.
     *
     * @param simulation the Simulation object
     * @param bayesPmWrapper the BayesPmWrapper object
     * @param parameters the Parameters object
     */
    public BayesEstimatorWrapper(Simulation simulation, BayesPmWrapper bayesPmWrapper, Parameters parameters) {
        this(new DataWrapper(simulation, parameters), bayesPmWrapper, parameters);
    }

    /**
     * 

Constructor for BayesEstimatorWrapper.

* * @param dataWrapper a {@link edu.cmu.tetradapp.model.DataWrapper} object * @param bayesPmWrapper a {@link edu.cmu.tetradapp.model.BayesPmWrapper} object */ public BayesEstimatorWrapper(DataWrapper dataWrapper, BayesPmWrapper bayesPmWrapper, Parameters parameters) { if (dataWrapper == null) { throw new NullPointerException( "BayesDataWrapper must not be null."); } this.dataWrapper = dataWrapper; this.parameters = parameters; if (bayesPmWrapper == null) { throw new NullPointerException("BayesPmWrapper must not be null"); } DataModelList dataModel = dataWrapper.getDataModelList(); if (dataModel != null) { for (int i = 0; i < dataWrapper.getDataModelList().size(); i++) { DataModel model = dataWrapper.getDataModelList().get(i); DataSet dataSet = (DataSet) model; bayesPmWrapper.setModelIndex(i); BayesPm bayesPm = bayesPmWrapper.getBayesPm(); estimate(dataSet, bayesPm); this.bayesIms.add(this.bayesIm); } this.bayesIm = this.bayesIms.get(0); // log(this.bayesIm); } else { throw new IllegalArgumentException("Data must consist of discrete data sets."); } this.name = bayesPmWrapper.getName(); this.numModels = this.bayesIms.size(); this.modelIndex = 0; this.bayesIm = this.bayesIms.get(this.modelIndex); DataModel model = dataModel.get(this.modelIndex); this.dataSet = (DataSet) model; } /** *

Constructor for BayesEstimatorWrapper.

* * @param dataWrapper a {@link edu.cmu.tetradapp.model.DataWrapper} object * @param bayesImWrapper a {@link edu.cmu.tetradapp.model.BayesImWrapper} object */ public BayesEstimatorWrapper(DataWrapper dataWrapper, BayesImWrapper bayesImWrapper, Parameters parameters) { this(dataWrapper, new BayesPmWrapper(bayesImWrapper), parameters); } /** * Generates a simple exemplar of this class to test serialization. * * @return a {@link edu.cmu.tetradapp.model.PcRunner} object * @see TetradSerializableUtils */ public static PcRunner serializableInstance() { return PcRunner.serializableInstance(); } //==============================PUBLIC METHODS========================// /** *

getEstimatedBayesIm.

* * @return a {@link edu.cmu.tetrad.bayes.BayesIm} object */ public BayesIm getEstimatedBayesIm() { return this.bayesIm; } /** *

Setter for the field bayesIm.

* * @param bayesIm a {@link edu.cmu.tetrad.bayes.BayesIm} object */ public void setBayesIm(BayesIm bayesIm) { this.bayesIms.clear(); this.bayesIms.add(bayesIm); } /** *

Getter for the field dataSet.

* * @return a {@link edu.cmu.tetrad.data.DataSet} object */ public DataSet getDataSet() { return this.dataSet; } /** *

getGraph.

* * @return a {@link edu.cmu.tetrad.graph.Graph} object */ public Graph getGraph() { return this.bayesIm.getBayesPm().getDag(); } /** *

Getter for the field name.

* * @return a {@link java.lang.String} object */ public String getName() { return this.name; } /** * {@inheritDoc} */ public void setName(String name) { this.name = name; } /** * Returns the number of models. * * @return the number of models. */ public int getNumModels() { return this.numModels; } /** * Sets the number of models. * * @param numModels the number of models to be set. */ public void setNumModels(int numModels) { this.numModels = numModels; } /** * Retrieves the model index. * * @return the model index */ public int getModelIndex() { return this.modelIndex; } /** * Sets the model index. * * @param modelIndex the index of the model to be set. */ public void setModelIndex(int modelIndex) { this.modelIndex = modelIndex; this.bayesIm = this.bayesIms.get(modelIndex); DataModelList dataModel = this.dataWrapper.getDataModelList(); this.dataSet = (DataSet) dataModel.get(modelIndex); } //======================== Private Methods ======================// /** * Writes the object to the specified ObjectOutputStream. * * @param out The ObjectOutputStream to write the object to. * @throws IOException If an I/O error occurs. */ /** * Writes the object to the specified ObjectOutputStream. * * @param out The ObjectOutputStream to write the object to. * @throws IOException If an I/O error occurs. */ @Serial private void writeObject(ObjectOutputStream out) throws IOException { try { out.defaultWriteObject(); } catch (IOException e) { TetradLogger.getInstance().log("Failed to serialize object: " + getClass().getCanonicalName() + ", " + e.getMessage()); throw e; } } /** * Reads the object from the specified ObjectInputStream. This method is used during deserialization * to restore the state of the object. * * @param in The ObjectInputStream to read the object from. * @throws IOException If an I/O error occurs. * @throws ClassNotFoundException If the class of the serialized object cannot be found. */ @Serial private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException { try { in.defaultReadObject(); } catch (IOException e) { TetradLogger.getInstance().log("Failed to deserialize object: " + getClass().getCanonicalName() + ", " + e.getMessage()); throw e; } } private void log(BayesIm im) { TetradLogger.getInstance().log("ML estimated Bayes IM."); String message = im.toString(); TetradLogger.getInstance().log(message); } private void estimate(DataSet dataSet, BayesPm bayesPm) { Graph graph = bayesPm.getDag(); for (Node node : graph.getNodes()) { if (node.getNodeType() == NodeType.LATENT) { throw new IllegalArgumentException("Estimation of Bayes IMs " + "with latents is not supported."); } } if (DataUtils.containsMissingValue(dataSet)) { throw new IllegalArgumentException("Please remove or impute missing values."); } double prior = parameters.getDouble("bayesEstimatorCellPrior", 1.0); try { MlBayesEstimator estimator = new MlBayesEstimator(prior); this.bayesIm = estimator.estimate(bayesPm, dataSet); } catch (ArrayIndexOutOfBoundsException e) { throw new RuntimeException("Value assignments between Bayes PM " + "and discrete data set do not match."); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy