All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.cmu.tetradapp.model.BayesPmWrapper Maven / Gradle / Ivy

The newest version!
///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below.       //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,       //
// 2007, 2008, 2009, 2010, 2014, 2015, 2022 by Peter Spirtes, Richard        //
// Scheines, Joseph Ramsey, and Clark Glymour.                               //
//                                                                           //
// This program is free software; you can redistribute it and/or modify      //
// it under the terms of the GNU General Public License as published by      //
// the Free Software Foundation; either version 2 of the License, or         //
// (at your option) any later version.                                       //
//                                                                           //
// This program is distributed in the hope that it will be useful,           //
// but WITHOUT ANY WARRANTY; without even the implied warranty of            //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             //
// GNU General Public License for more details.                              //
//                                                                           //
// You should have received a copy of the GNU General Public License         //
// along with this program; if not, write to the Free Software               //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA //
///////////////////////////////////////////////////////////////////////////////
package edu.cmu.tetradapp.model;

import edu.cmu.tetrad.algcomparison.simulation.BayesNetSimulation;
import edu.cmu.tetrad.bayes.BayesIm;
import edu.cmu.tetrad.bayes.BayesPm;
import edu.cmu.tetrad.data.DataSet;
import edu.cmu.tetrad.data.DiscreteVariable;
import edu.cmu.tetrad.graph.Dag;
import edu.cmu.tetrad.graph.Graph;
import edu.cmu.tetrad.graph.GraphNode;
import edu.cmu.tetrad.graph.Node;
import edu.cmu.tetrad.util.Parameters;
import edu.cmu.tetrad.util.TetradLogger;
import edu.cmu.tetrad.util.TetradSerializableUtils;
import edu.cmu.tetradapp.session.SessionModel;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serial;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * Wraps a Bayes Pm for use in the Tetrad application.
 *
 * @author josephramsey
 * @version $Id: $Id
 */
public class BayesPmWrapper implements SessionModel {
    @Serial
    private static final long serialVersionUID = 23L;

    /**
     * The number of models.
     */
    private int numModels = 1;

    /**
     * The index of the model.
     */
    private int modelIndex;

    /**
     * The name of the model source.
     */
    private String modelSourceName;

    /**
     * The name of the model.
     */
    private String name;

    /**
     * The Bayes Pm.
     */
    private List bayesPms;

    //==============================CONSTRUCTORS=========================//

    /**
     * Creates a new BayesPm from the given DAG and uses it to construct a new BayesPm.
     *
     * @param graph  a {@link edu.cmu.tetrad.graph.Graph} object
     * @param params a {@link edu.cmu.tetrad.util.Parameters} object
     */
    public BayesPmWrapper(Graph graph, Parameters params) {
        if (graph == null) {
            throw new NullPointerException("Graph must not be null.");
        }

        int lowerBound;
        int upperBound;

        if (params.getString("initializationMode", "trinary").equals("trinary")) {
            lowerBound = upperBound = 3;
            setBayesPm(graph, lowerBound, upperBound);
        } else if (params.getString("initializationMode", "trinary").equals("range")) {
            lowerBound = params.getInt("minCategories", 2);
            upperBound = params.getInt("maxCategories", 4);
            setBayesPm(graph, lowerBound, upperBound);
        } else {
            throw new IllegalStateException("Unrecognized type.");
        }
    }

    /**
     * 

Constructor for BayesPmWrapper.

* * @param simulation a {@link edu.cmu.tetradapp.model.Simulation} object */ public BayesPmWrapper(Simulation simulation) { List bayesIms; if (simulation == null) { throw new NullPointerException("The Simulation box does not contain a simulation."); } edu.cmu.tetrad.algcomparison.simulation.Simulation _simulation = simulation.getSimulation(); if (_simulation == null) { throw new NullPointerException("No data sets have been simulated."); } if (!(_simulation instanceof BayesNetSimulation)) { throw new IllegalArgumentException("That was not a discrete Bayes net simulation."); } bayesIms = ((BayesNetSimulation) _simulation).getBayesIms(); if (bayesIms == null) { throw new NullPointerException("It looks like you have not done a simulation."); } List bayesPms = new ArrayList<>(); for (BayesIm bayesIm : bayesIms) { bayesPms.add(bayesIm.getBayesPm()); } this.bayesPms = bayesPms; this.numModels = simulation.getDataModelList().size(); this.modelIndex = 0; this.modelSourceName = simulation.getName(); } /** *

Constructor for BayesPmWrapper.

* * @param graph a {@link edu.cmu.tetrad.graph.Dag} object * @param bayesPm a {@link edu.cmu.tetrad.bayes.BayesPm} object * @param params a {@link edu.cmu.tetrad.util.Parameters} object */ public BayesPmWrapper(Dag graph, BayesPm bayesPm, Parameters params) { if (graph == null) { throw new NullPointerException("Graph must not be null."); } if (bayesPm == null) { throw new NullPointerException("BayesPm must not be null"); } int lowerBound; int upperBound; if (params.getString("initializationMode", "trinary").equals("trinary")) { lowerBound = upperBound = 3; setBayesPm(new BayesPm(graph, bayesPm, lowerBound, upperBound)); } else if (params.getString("initializationMode", "trinary").equals("range")) { lowerBound = params.getInt("minCategories", 2); upperBound = params.getInt("maxCategories", 4); setBayesPm(graph, lowerBound, upperBound); } else { throw new IllegalStateException("Unrecognized type."); } log(bayesPm); } /** * Creates a new BayesPm from the given workbench and uses it to construct a new BayesPm. * * @param graphWrapper a {@link edu.cmu.tetradapp.model.GraphWrapper} object * @param params a {@link edu.cmu.tetrad.util.Parameters} object * @throws java.lang.RuntimeException If the parent graph cannot be converted into a DAG. */ public BayesPmWrapper(GraphWrapper graphWrapper, Parameters params) { if (graphWrapper == null) { throw new NullPointerException("Graph must not be null."); } Dag graph; try { graph = new Dag(graphWrapper.getGraph()); } catch (Exception e) { throw new RuntimeException( "The parent graph cannot be converted to " + "a DAG."); } int lowerBound; int upperBound; if (params.getString("bayesPmInitializationMode", "range").equals("trinary")) { lowerBound = upperBound = 3; setBayesPm(graph, lowerBound, upperBound); } else if (params.getString("bayesPmInitializationMode", "range").equals("range")) { lowerBound = params.getInt("lowerBoundNumVals", 2); upperBound = params.getInt("upperBoundNumVals", 4); setBayesPm(graph, lowerBound, upperBound); } else { throw new IllegalStateException("Unrecognized type."); } } /** *

Constructor for BayesPmWrapper.

* * @param wrapper a {@link edu.cmu.tetradapp.model.BayesEstimatorWrapper} object */ public BayesPmWrapper(BayesEstimatorWrapper wrapper) { setBayesPm(new BayesPm(wrapper.getEstimatedBayesIm().getBayesPm())); } /** *

Constructor for BayesPmWrapper.

* * @param wrapper a {@link edu.cmu.tetradapp.model.BayesImWrapper} object */ public BayesPmWrapper(BayesImWrapper wrapper) { this.bayesPms = new ArrayList<>(); for (int i = 0; i < wrapper.getNumModels(); i++) { wrapper.setModelIndex(i); this.bayesPms.add(wrapper.getBayesIm().getBayesPm()); } this.numModels = wrapper.getNumModels(); } /** *

Constructor for BayesPmWrapper.

* * @param graphWrapper a {@link edu.cmu.tetradapp.model.GraphSource} object * @param dataWrapper a {@link edu.cmu.tetradapp.model.DataWrapper} object */ public BayesPmWrapper(GraphSource graphWrapper, DataWrapper dataWrapper) { this(new Dag(graphWrapper.getGraph()), dataWrapper); } /** *

Constructor for BayesPmWrapper.

* * @param graph a {@link edu.cmu.tetrad.graph.Graph} object * @param dataWrapper a {@link edu.cmu.tetradapp.model.DataWrapper} object */ public BayesPmWrapper(Graph graph, DataWrapper dataWrapper) { DataSet dataSet = (DataSet) dataWrapper.getSelectedDataModel(); List vars = dataSet.getVariables(); Map nodesToVars = new HashMap<>(); for (int i = 0; i < dataSet.getNumColumns(); i++) { DiscreteVariable var = (DiscreteVariable) vars.get(i); String name = var.getName(); Node node = new GraphNode(name); nodesToVars.put(node.getName(), var); } BayesPm bayesPm = new BayesPm(graph); List nodes = bayesPm.getDag().getNodes(); for (Node node : nodes) { Node var = nodesToVars.get(node.getName()); if (var != null) { DiscreteVariable var2 = nodesToVars.get(node.getName()); int numCategories = var2.getNumCategories(); List categories = new ArrayList<>(); for (int j = 0; j < numCategories; j++) { categories.add(var2.getCategory(j)); } bayesPm.setCategories(node, categories); } } setBayesPm(bayesPm); } /** *

Constructor for BayesPmWrapper.

* * @param graphWrapper a {@link edu.cmu.tetradapp.model.GraphWrapper} object * @param simulation a {@link edu.cmu.tetradapp.model.Simulation} object */ public BayesPmWrapper(GraphWrapper graphWrapper, Simulation simulation) { this(graphWrapper, (DataWrapper) simulation); } /** *

Constructor for BayesPmWrapper.

* * @param wrapper a {@link edu.cmu.tetradapp.model.AlgorithmRunner} object * @param params a {@link edu.cmu.tetrad.util.Parameters} object */ public BayesPmWrapper(AlgorithmRunner wrapper, Parameters params) { this(new Dag(wrapper.getGraph()), params); } /** *

Constructor for BayesPmWrapper.

* * @param wrapper a {@link edu.cmu.tetradapp.model.AlgorithmRunner} object * @param dataWrapper a {@link edu.cmu.tetradapp.model.DataWrapper} object */ public BayesPmWrapper(AlgorithmRunner wrapper, DataWrapper dataWrapper) { this(new Dag(wrapper.getGraph()), dataWrapper); } /** *

Constructor for BayesPmWrapper.

* * @param wrapper a {@link edu.cmu.tetradapp.model.AlgorithmRunner} object * @param simulation a {@link edu.cmu.tetradapp.model.Simulation} object */ public BayesPmWrapper(AlgorithmRunner wrapper, Simulation simulation) { this(new Dag(wrapper.getGraph()), simulation); } /** *

Constructor for BayesPmWrapper.

* * @param wrapper a {@link edu.cmu.tetradapp.model.BayesEstimatorWrapper} object * @param simulation a {@link edu.cmu.tetradapp.model.Simulation} object */ public BayesPmWrapper(BayesEstimatorWrapper wrapper, Simulation simulation) { this(new Dag(wrapper.getGraph()), simulation); } /** *

Constructor for BayesPmWrapper.

* * @param wrapper a {@link edu.cmu.tetradapp.model.BayesEstimatorWrapper} object * @param dataWrapper a {@link edu.cmu.tetradapp.model.DataWrapper} object */ public BayesPmWrapper(BayesEstimatorWrapper wrapper, DataWrapper dataWrapper) { this(new Dag(wrapper.getGraph()), dataWrapper); } /** * Creates a new BayesPm from the given workbench and uses it to construct a new BayesPm. * * @param dagWrapper a {@link edu.cmu.tetradapp.model.DagWrapper} object * @param params a {@link edu.cmu.tetrad.util.Parameters} object * @throws java.lang.RuntimeException If the parent graph cannot be converted into a DAG. */ public BayesPmWrapper(DagWrapper dagWrapper, Parameters params) { if (dagWrapper == null) { throw new NullPointerException("Graph must not be null."); } Dag graph; try { graph = new Dag(dagWrapper.getDag()); } catch (Exception e) { throw new RuntimeException( "The parent graph cannot be converted to " + "a DAG."); } int lowerBound; int upperBound; if (params.getString("bayesPmInitializationMode", "trinary").equals("trinary")) { lowerBound = upperBound = 3; } else if (params.getString("bayesPmInitializationMode", "trinary").equals("range")) { lowerBound = params.getInt("minCategories", 2); upperBound = params.getInt("maxCategories", 4); } else { throw new IllegalStateException("Unrecognized type."); } setBayesPm(graph, lowerBound, upperBound); } /** *

Constructor for BayesPmWrapper.

* * @param dagWrapper a {@link edu.cmu.tetradapp.model.DagWrapper} object * @param oldBayesPmWrapper a {@link edu.cmu.tetradapp.model.BayesPmWrapper} object * @param params a {@link edu.cmu.tetrad.util.Parameters} object */ public BayesPmWrapper(DagWrapper dagWrapper, BayesPmWrapper oldBayesPmWrapper, Parameters params) { try { if (dagWrapper == null) { throw new NullPointerException("Graph must not be null."); } if (oldBayesPmWrapper == null) { throw new NullPointerException("BayesPm must not be null"); } Graph graph = dagWrapper.getDag(); int lowerBound; int upperBound; String string = params.getString("bayesPmInitializationMode", "trinary"); if (string.equals("trinary")) { lowerBound = upperBound = 3; setBayesPm(new BayesPm(graph, oldBayesPmWrapper.getBayesPm(), lowerBound, upperBound)); } else if (string.equals("range")) { lowerBound = params.getInt("minCategories", 2); upperBound = params.getInt("maxCategories", 4); setBayesPm(graph, lowerBound, upperBound); } else { throw new IllegalStateException("Unrecognized type."); } } catch (Exception e) { throw new RuntimeException( "The parent graph cannot be converted to " + "a DAG."); } } /** *

Constructor for BayesPmWrapper.

* * @param dagWrapper a {@link edu.cmu.tetradapp.model.DagWrapper} object * @param dataWrapper a {@link edu.cmu.tetradapp.model.DataWrapper} object */ public BayesPmWrapper(DagWrapper dagWrapper, DataWrapper dataWrapper) { DataSet dataSet = (DataSet) dataWrapper.getSelectedDataModel(); List vars = dataSet.getVariables(); Map nodesToVars = new HashMap<>(); for (int i = 0; i < dataSet.getNumColumns(); i++) { DiscreteVariable var = (DiscreteVariable) vars.get(i); String name = var.getName(); Node node = new GraphNode(name); nodesToVars.put(node.getName(), var); } Dag graph = new Dag(dagWrapper.getDag()); BayesPm bayesPm = new BayesPm(graph); List nodes = bayesPm.getDag().getNodes(); for (Node node : nodes) { Node var = nodesToVars.get(node.getName()); if (var != null) { DiscreteVariable var2 = nodesToVars.get(node.getName()); int numCategories = var2.getNumCategories(); List categories = new ArrayList<>(); for (int j = 0; j < numCategories; j++) { categories.add(var2.getCategory(j)); } bayesPm.setCategories(node, categories); } } setBayesPm(bayesPm); } /** *

Constructor for BayesPmWrapper.

* * @param dagWrapper a {@link edu.cmu.tetradapp.model.DagWrapper} object * @param dataWrapper a {@link edu.cmu.tetradapp.model.Simulation} object */ public BayesPmWrapper(DagWrapper dagWrapper, Simulation dataWrapper) { this(dagWrapper, (DataWrapper) dataWrapper); } /** * Generates a simple exemplar of this class to test serialization. * * @return a {@link edu.cmu.tetradapp.model.BayesPmWrapper} object * @see TetradSerializableUtils */ public static BayesPmWrapper serializableInstance() { return new BayesPmWrapper(Dag.serializableInstance(), new Parameters()); } private void setBayesPm(Graph graph, int lowerBound, int upperBound) { BayesPm b = new BayesPm(graph, lowerBound, upperBound); setBayesPm(b); } //=============================PUBLIC METHODS========================// /** *

getBayesPm.

* * @return a {@link edu.cmu.tetrad.bayes.BayesPm} object */ public BayesPm getBayesPm() { return this.bayesPms.get(getModelIndex()); } private void setBayesPm(BayesPm b) { this.bayesPms = new ArrayList<>(); this.bayesPms.add(b); } /** * Writes the object to the specified ObjectOutputStream. * * @param out The ObjectOutputStream to write the object to. * @throws IOException If an I/O error occurs. */ /** * Writes the object to the specified ObjectOutputStream. * * @param out The ObjectOutputStream to write the object to. * @throws IOException If an I/O error occurs. */ @Serial private void writeObject(ObjectOutputStream out) throws IOException { try { out.defaultWriteObject(); } catch (IOException e) { TetradLogger.getInstance().log("Failed to serialize object: " + getClass().getCanonicalName() + ", " + e.getMessage()); throw e; } } /** * Reads the object from the specified ObjectInputStream. This method is used during deserialization * to restore the state of the object. * * @param in The ObjectInputStream to read the object from. * @throws IOException If an I/O error occurs. * @throws ClassNotFoundException If the class of the serialized object cannot be found. */ @Serial private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException { try { in.defaultReadObject(); } catch (IOException e) { TetradLogger.getInstance().log("Failed to deserialize object: " + getClass().getCanonicalName() + ", " + e.getMessage()); throw e; } } /** *

getGraph.

* * @return a {@link edu.cmu.tetrad.graph.Graph} object */ public Graph getGraph() { return getBayesPm().getDag(); } /** *

Getter for the field name.

* * @return a {@link java.lang.String} object */ public String getName() { return this.name; } /** * {@inheritDoc} */ public void setName(String name) { this.name = name; } //================================= Private Methods ==================================// private void log(BayesPm pm) { TetradLogger.getInstance().log("Bayes Parametric Model (Bayes PM)"); String message = pm.toString(); TetradLogger.getInstance().log(message); } /** *

getSourceGraph.

* * @return a {@link edu.cmu.tetrad.graph.Graph} object */ public Graph getSourceGraph() { return getGraph(); } /** *

getResultGraph.

* * @return a {@link edu.cmu.tetrad.graph.Graph} object */ public Graph getResultGraph() { return getGraph(); } /** *

getVariableNames.

* * @return a {@link java.util.List} object */ public List getVariableNames() { return getGraph().getNodeNames(); } /** *

getVariables.

* * @return a {@link java.util.List} object */ public List getVariables() { return getGraph().getNodes(); } /** *

Getter for the field numModels.

* * @return a int */ public int getNumModels() { return this.numModels; } /** *

Getter for the field modelIndex.

* * @return a int */ public int getModelIndex() { return this.modelIndex; } /** *

Setter for the field modelIndex.

* * @param modelIndex a int */ public void setModelIndex(int modelIndex) { this.modelIndex = modelIndex; } /** *

Getter for the field modelSourceName.

* * @return a {@link java.lang.String} object */ public String getModelSourceName() { return this.modelSourceName; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy