edu.cmu.tetradapp.model.FactorAnalysisRunner Maven / Gradle / Ivy
The newest version!
///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below. //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, //
// 2007, 2008, 2009, 2010, 2014, 2015, 2022 by Peter Spirtes, Richard //
// Scheines, Joseph Ramsey, and Clark Glymour. //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation; either version 2 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program; if not, write to the Free Software //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA //
///////////////////////////////////////////////////////////////////////////////
package edu.cmu.tetradapp.model;
import edu.cmu.tetrad.data.ContinuousVariable;
import edu.cmu.tetrad.data.DataSet;
import edu.cmu.tetrad.graph.*;
import edu.cmu.tetrad.search.FactorAnalysis;
import edu.cmu.tetrad.util.*;
import org.apache.commons.math3.util.FastMath;
import java.io.Serial;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.List;
import java.util.Vector;
/**
* FactorAnalysisRunner class.
*
* @author Michael Freenor
* @version $Id: $Id
*/
public class FactorAnalysisRunner extends AbstractAlgorithmRunner {
@Serial
private static final long serialVersionUID = 23L;
/**
* The output of the algorithm.
*/
private String output;
/**
* The rotated solution.
*/
private Matrix rotatedSolution;
/**
* The threshold for the rotated solution.
*/
private double threshold;
//============================CONSTRUCTORS============================//
/**
* Constructs a wrapper for the given DataWrapper. The DataWrapper must contain a DataSet that is either a DataSet
* or a DataSet or a DataList containing either a DataSet or a DataSet as its selected model.
*/
private FactorAnalysisRunner(DataWrapper dataWrapper, Parameters pc) {
super(dataWrapper, pc, null);
}
/**
* Generates a simple exemplar of this class to test serialization.
*
* @return a {@link edu.cmu.tetradapp.model.PcRunner} object
* @see TetradSerializableUtils
*/
public static PcRunner serializableInstance() {
return PcRunner.serializableInstance();
}
//===================PUBLIC METHODS OVERRIDING ABSTRACT================//
/**
* execute.
*/
public void execute() {
DataSet selectedModel = (DataSet) getDataModel();
if (selectedModel == null) {
throw new NullPointerException("Data not specified.");
}
FactorAnalysis analysis = new FactorAnalysis(selectedModel);
this.threshold = .2;
Matrix unrotatedSolution = analysis.successiveResidual();
this.rotatedSolution = analysis.successiveFactorVarimax(unrotatedSolution);
NumberFormat nf = NumberFormatUtil.getInstance().getNumberFormat();
this.output = "Unrotated Factor Loading Matrix:\n";
this.output += tableString(unrotatedSolution, nf, Double.POSITIVE_INFINITY);
if (unrotatedSolution.getNumColumns() != 1) {
this.output += "\n\nRotated Matrix (using sequential varimax):\n";
this.output += tableString(this.rotatedSolution, nf, this.threshold);
}
SemGraph graph = new SemGraph();
Vector observedVariables = new Vector<>();
for (Node a : selectedModel.getVariables()) {
graph.addNode(a);
observedVariables.add(a);
}
Vector factors = new Vector<>();
for (int i = 0; i < getRotatedSolution().getNumColumns(); i++) {
ContinuousVariable factor = new ContinuousVariable("Factor" + (i + 1));
factor.setNodeType(NodeType.LATENT);
graph.addNode(factor);
factors.add(factor);
}
for (int i = 0; i < getRotatedSolution().getNumRows(); i++) {
for (int j = 0; j < getRotatedSolution().getNumColumns(); j++) {
if (FastMath.abs(getRotatedSolution().get(i, j)) > getThreshold()) {
graph.addDirectedEdge(factors.get(j), observedVariables.get(i));
}
}
}
setResultGraph(graph);
}
private String tableString(Matrix matrix, NumberFormat nf, double threshold) {
TextTable table = new TextTable(matrix.getNumRows() + 1, matrix.getNumColumns() + 1);
for (int i = 0; i < matrix.getNumRows() + 1; i++) {
for (int j = 0; j < matrix.getNumColumns() + 1; j++) {
if (i > 0 && j == 0) {
table.setToken(i, 0, "X" + i);
} else if (i == 0 && j > 0) {
table.setToken(0, j, "Factor " + j);
} else if (i > 0) {
double coefficient = matrix.get(i - 1, j - 1);
String token = !Double.isNaN(coefficient) ? nf.format(coefficient) : "Undefined";
token += FastMath.abs(coefficient) > threshold ? "*" : " ";
table.setToken(i, j, token);
}
}
}
return "\n" + table;
}
/**
* getGraph.
*
* @return a {@link edu.cmu.tetrad.graph.Graph} object
*/
public Graph getGraph() {
return getResultGraph();
}
/**
* getTriplesClassificationTypes.
*
* @return the names of the triple classifications. Coordinates with getTriplesList.
*/
public List getTriplesClassificationTypes() {
return new ArrayList<>();
}
/**
* {@inheritDoc}
*/
public List> getTriplesLists(Node node) {
return new ArrayList<>();
}
/**
* supportsKnowledge.
*
* @return a boolean
*/
public boolean supportsKnowledge() {
return true;
}
/**
* {@inheritDoc}
*/
@Override
public String getAlgorithmName() {
return "Factor Analysis";
}
/**
* Getter for the field output
.
*
* @return a {@link java.lang.String} object
*/
public String getOutput() {
return this.output;
}
private Matrix getRotatedSolution() {
return this.rotatedSolution;
}
private double getThreshold() {
return this.threshold;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy