All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.cmu.tetradapp.model.ImpliedCovarianceDataWrapper Maven / Gradle / Ivy

The newest version!
///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below.       //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,       //
// 2007, 2008, 2009, 2010, 2014, 2015, 2022 by Peter Spirtes, Richard        //
// Scheines, Joseph Ramsey, and Clark Glymour.                               //
//                                                                           //
// This program is free software; you can redistribute it and/or modify      //
// it under the terms of the GNU General Public License as published by      //
// the Free Software Foundation; either version 2 of the License, or         //
// (at your option) any later version.                                       //
//                                                                           //
// This program is distributed in the hope that it will be useful,           //
// but WITHOUT ANY WARRANTY; without even the implied warranty of            //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             //
// GNU General Public License for more details.                              //
//                                                                           //
// You should have received a copy of the GNU General Public License         //
// along with this program; if not, write to the Free Software               //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA //
///////////////////////////////////////////////////////////////////////////////

package edu.cmu.tetradapp.model;

import edu.cmu.tetrad.data.CovarianceMatrix;
import edu.cmu.tetrad.data.LogDataUtils;
import edu.cmu.tetrad.graph.Node;
import edu.cmu.tetrad.sem.SemEstimator;
import edu.cmu.tetrad.sem.SemIm;
import edu.cmu.tetrad.util.Matrix;
import edu.cmu.tetrad.util.Parameters;
import edu.cmu.tetrad.util.TetradSerializableUtils;

import java.io.Serial;
import java.util.List;


/**
 * Wraps a data model so that a random sample will automatically be drawn on construction from a SemIm. Measured
 * variables only.
 *
 * @author josephramsey
 * @version $Id: $Id
 */
public class ImpliedCovarianceDataWrapper extends DataWrapper {
    @Serial
    private static final long serialVersionUID = 23L;

    /**
     * The SEM IM.
     */
    private SemIm semIm;

    //==============================CONSTRUCTORS=============================//

    /**
     * 

Constructor for ImpliedCovarianceDataWrapper.

* * @param wrapper a {@link edu.cmu.tetradapp.model.SemEstimatorWrapper} object * @param params a {@link edu.cmu.tetrad.util.Parameters} object */ public ImpliedCovarianceDataWrapper(SemEstimatorWrapper wrapper, Parameters params) { SemEstimator semEstimator = wrapper.getSemEstimator(); SemIm semIm1 = semEstimator.getEstimatedSem(); if (semIm1 != null) { Matrix matrix2D = semIm1.getImplCovarMeas(); int sampleSize = semIm1.getSampleSize(); List variables = wrapper.getSemEstimator().getEstimatedSem().getSemPm().getMeasuredNodes(); CovarianceMatrix cov = new CovarianceMatrix(variables, matrix2D, sampleSize); setDataModel(cov); setSourceGraph(wrapper.getSemEstimator().getEstimatedSem().getSemPm().getGraph()); this.semIm = wrapper.getEstimatedSemIm(); } LogDataUtils.logDataModelList("Data simulated from a linear structural equation model.", getDataModelList()); } /** * Generates a simple exemplar of this class to test serialization. * * @return a {@link edu.cmu.tetradapp.model.PcRunner} object * @see TetradSerializableUtils */ public static PcRunner serializableInstance() { return PcRunner.serializableInstance(); } /** *

Getter for the field semIm.

* * @return a {@link edu.cmu.tetrad.sem.SemIm} object */ public SemIm getSemIm() { return this.semIm; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy