edu.cmu.tetradapp.model.NonparanormalTransform Maven / Gradle / Ivy
The newest version!
///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below. //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, //
// 2007, 2008, 2009, 2010, 2014, 2015, 2022 by Peter Spirtes, Richard //
// Scheines, Joseph Ramsey, and Clark Glymour. //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation; either version 2 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program; if not, write to the Free Software //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA //
///////////////////////////////////////////////////////////////////////////////
package edu.cmu.tetradapp.model;
import edu.cmu.tetrad.data.*;
import edu.cmu.tetrad.util.Parameters;
import edu.cmu.tetrad.util.TetradSerializableUtils;
/**
* Converts a continuous data set to a correlation matrix.
*
* @author josephramsey
* @version $Id: $Id
*/
public class NonparanormalTransform extends DataWrapper {
private static final long serialVersionUID = 23L;
//=============================CONSTRUCTORS==============================//
/**
* Constructor for NonparanormalTransform.
*
* @param wrapper a {@link edu.cmu.tetradapp.model.DataWrapper} object
* @param params a {@link edu.cmu.tetrad.util.Parameters} object
*/
public NonparanormalTransform(DataWrapper wrapper, Parameters params) {
DataModel dataModel = wrapper.getSelectedDataModel();
if (dataModel instanceof ICovarianceMatrix) {
throw new IllegalArgumentException("Data model must be a tabular continuous data set, not a covariance matrix.");
}
DataSet nonparanormalTransformed = DataTransforms.getNonparanormalTransformed((DataSet) dataModel);
nonparanormalTransformed.setKnowledge(dataModel.getKnowledge().copy());
setDataModel(nonparanormalTransformed);
setSourceGraph(wrapper.getSourceGraph());
LogDataUtils.logDataModelList("Conversion of parent data to correlation matrix form.", getDataModelList());
}
/**
* Generates a simple exemplar of this class to test serialization.
*
* @return a {@link edu.cmu.tetradapp.model.PcRunner} object
* @see TetradSerializableUtils
*/
public static PcRunner serializableInstance() {
return PcRunner.serializableInstance();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy