edu.cmu.tetradapp.model.PurifyRunner Maven / Gradle / Ivy
The newest version!
///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below. //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, //
// 2007, 2008, 2009, 2010, 2014, 2015, 2022 by Peter Spirtes, Richard //
// Scheines, Joseph Ramsey, and Clark Glymour. //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation; either version 2 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program; if not, write to the Free Software //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA //
///////////////////////////////////////////////////////////////////////////////
package edu.cmu.tetradapp.model;
import edu.cmu.tetrad.data.*;
import edu.cmu.tetrad.graph.Graph;
import edu.cmu.tetrad.graph.LayoutUtil;
import edu.cmu.tetrad.graph.Node;
import edu.cmu.tetrad.graph.NodeType;
import edu.cmu.tetrad.search.utils.*;
import edu.cmu.tetrad.util.Parameters;
import edu.cmu.tetrad.util.TetradSerializableUtils;
import java.util.ArrayList;
import java.util.List;
/**
* Extends AbstractAlgorithmRunner to produce a wrapper for the Purify algorithm.
*
* @author Ricardo Silva
* @version $Id: $Id
*/
public class PurifyRunner extends AbstractMimRunner implements GraphSource, KnowledgeBoxInput {
private static final long serialVersionUID = 23L;
//============================CONSTRUCTORS============================//
/**
* Constructor for PurifyRunner.
*
* @param dataWrapper a {@link edu.cmu.tetradapp.model.DataWrapper} object
* @param mmWrapper a {@link edu.cmu.tetradapp.model.MeasurementModelWrapper} object
* @param params a {@link edu.cmu.tetrad.util.Parameters} object
*/
public PurifyRunner(DataWrapper dataWrapper,
MeasurementModelWrapper mmWrapper,
Parameters params) {
super(dataWrapper, mmWrapper.getClusters(), params);
setClusters(mmWrapper.getClusters());
params.set("clusters", mmWrapper.getClusters());
}
/**
* Generates a simple exemplar of this class to test serialization.
*
* @return a {@link edu.cmu.tetradapp.model.PcRunner} object
* @see TetradSerializableUtils
*/
public static PcRunner serializableInstance() {
return PcRunner.serializableInstance();
}
//===================PUBLIC METHODS OVERRIDING ABSTRACT================//
/**
* Executes the algorithm, producing (at least) a result workbench. Must be implemented in the extending class.
*/
public void execute() {
Object source = getData();
TetradTest test;
System.out.println("Clusters " + getParams().get("clusters", null));
if (source instanceof ICovarianceMatrix covMatrix) {
CorrelationMatrix corrMatrix = new CorrelationMatrix(covMatrix);
double alpha = getParams().getDouble("alpha", 0.001);
BpcTestType sigTestType = (BpcTestType) getParams().get("tetradTestType", BpcTestType.TETRAD_WISHART);
test = new TetradTestContinuous(covMatrix, sigTestType, alpha);
// sextadTest = new DeltaSextadTest(covMatrix);
} else if (source instanceof DataSet data) {
double alpha = getParams().getDouble("alpha", 0.001);
BpcTestType sigTestType = (BpcTestType) getParams().get("tetradTestType", BpcTestType.TETRAD_WISHART);
test = new TetradTestContinuous(data, sigTestType, alpha);
// sextadTest = new DeltaSextadTest(data);
} else {
throw new RuntimeException(
"Data source for Purify of invalid type!");
}
List> inputPartition = ClusterUtils.clustersToPartition((Clusters) getParams().get("clusters", null), test.getVariables());
IPurify purify = new PurifyTetradBased(test);
List> partition = purify.purify(inputPartition);
Clusters outputClusters = ClusterUtils.partitionToClusters(partition);
List partitionAsInts = ClusterUtils.convertListToInt(partition, test.getVariables());
setResultGraph(ClusterUtils.convertSearchGraph(partitionAsInts, test.getVarNames()));
LayoutUtil.fruchtermanReingoldLayout(getResultGraph());
setClusters(outputClusters);
}
/**
* getClusters.
*
* @return a {@link edu.cmu.tetrad.data.Clusters} object
*/
public Clusters getClusters() {
return super.getClusters();
}
/**
* {@inheritDoc}
*/
protected void setClusters(Clusters clusters) {
super.setClusters(clusters);
}
/**
* getGraph.
*
* @return a {@link edu.cmu.tetrad.graph.Graph} object
*/
public Graph getGraph() {
return getResultGraph();
}
/**
* getVariables.
*
* @return a {@link java.util.List} object
*/
public java.util.List getVariables() {
List latents = new ArrayList<>();
for (String name : getVariableNames()) {
Node node = new ContinuousVariable(name);
node.setNodeType(NodeType.LATENT);
latents.add(node);
}
return latents;
}
/**
* getVariableNames.
*
* @return a {@link java.util.List} object
*/
public List getVariableNames() {
List> partition = ClusterUtils.clustersToPartition(getClusters(),
getData().getVariables());
return ClusterUtils.generateLatentNames(partition.size());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy