edu.cmu.tetradapp.model.datamanip.CovMatrixAverageWrapper Maven / Gradle / Ivy
The newest version!
///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below. //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, //
// 2007, 2008, 2009, 2010, 2014, 2015, 2022 by Peter Spirtes, Richard //
// Scheines, Joseph Ramsey, and Clark Glymour. //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation; either version 2 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program; if not, write to the Free Software //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA //
///////////////////////////////////////////////////////////////////////////////
package edu.cmu.tetradapp.model.datamanip;
import edu.cmu.tetrad.data.CovarianceMatrix;
import edu.cmu.tetrad.data.DataModel;
import edu.cmu.tetrad.data.ICovarianceMatrix;
import edu.cmu.tetrad.graph.Node;
import edu.cmu.tetrad.util.Matrix;
import edu.cmu.tetrad.util.Parameters;
import edu.cmu.tetrad.util.TetradSerializableUtils;
import edu.cmu.tetradapp.model.DataWrapper;
import edu.cmu.tetradapp.model.PcRunner;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
* Splits continuous data sets by collinear columns.
*
* @author Tyler Gibson
* @version $Id: $Id
*/
public class CovMatrixAverageWrapper extends DataWrapper {
private static final long serialVersionUID = 23L;
/**
* Constructor for CovMatrixAverageWrapper.
*
* @param covs an array of {@link edu.cmu.tetradapp.model.DataWrapper} objects
* @param params a {@link edu.cmu.tetrad.util.Parameters} object
*/
public CovMatrixAverageWrapper(DataWrapper[] covs, Parameters params) {
List matrices = new ArrayList<>(Arrays.asList(covs));
calcAverage(matrices);
}
/**
* Generates a simple exemplar of this class to test serialization.
*
* @return a {@link edu.cmu.tetradapp.model.PcRunner} object
* @see TetradSerializableUtils
*/
public static PcRunner serializableInstance() {
return PcRunner.serializableInstance();
}
private void calcAverage(List wrappers) {
List cov = new ArrayList<>();
for (DataWrapper wrapper : wrappers) {
DataModel selectedDataModel = wrapper.getSelectedDataModel();
if (!(selectedDataModel instanceof ICovarianceMatrix)) {
throw new IllegalArgumentException("Sorry, this is an average only over covariance matrices.");
}
cov.add(((ICovarianceMatrix) selectedDataModel).getMatrix());
}
Matrix cov3 = new Matrix(cov.get(0).getNumRows(), cov.get(0).getNumRows());
for (int i = 0; i < cov.get(0).getNumRows(); i++) {
for (int j = 0; j < cov.get(0).getNumRows(); j++) {
double c = 0.0;
for (Matrix matrix : cov) {
c += matrix.get(i, j);
}
c /= cov.size();
cov3.set(i, j, c);
cov3.set(j, i, c);
}
}
DataModel m = wrappers.get(0).getSelectedDataModel();
ICovarianceMatrix _cov = (ICovarianceMatrix) m;
List nodes = _cov.getVariables();
int n = _cov.getSampleSize();
ICovarianceMatrix covWrapper = new CovarianceMatrix(nodes, cov3, n);
setDataModel(covWrapper);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy