All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.cmu.tetradapp.model.datamanip.RemoveSelectedVariablesWrapper Maven / Gradle / Ivy

The newest version!
///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below.       //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,       //
// 2007, 2008, 2009, 2010, 2014, 2015, 2022 by Peter Spirtes, Richard        //
// Scheines, Joseph Ramsey, and Clark Glymour.                               //
//                                                                           //
// This program is free software; you can redistribute it and/or modify      //
// it under the terms of the GNU General Public License as published by      //
// the Free Software Foundation; either version 2 of the License, or         //
// (at your option) any later version.                                       //
//                                                                           //
// This program is distributed in the hope that it will be useful,           //
// but WITHOUT ANY WARRANTY; without even the implied warranty of            //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             //
// GNU General Public License for more details.                              //
//                                                                           //
// You should have received a copy of the GNU General Public License         //
// along with this program; if not, write to the Free Software               //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA //
///////////////////////////////////////////////////////////////////////////////

package edu.cmu.tetradapp.model.datamanip;

import edu.cmu.tetrad.data.*;
import edu.cmu.tetrad.graph.Node;
import edu.cmu.tetrad.util.Matrix;
import edu.cmu.tetrad.util.Parameters;
import edu.cmu.tetrad.util.TetradSerializableUtils;
import edu.cmu.tetradapp.model.DataWrapper;
import edu.cmu.tetradapp.model.PcRunner;

/**
 * Add description
 *
 * @author Tyler Gibson
 * @version $Id: $Id
 */
public class RemoveSelectedVariablesWrapper extends DataWrapper {
    private static final long serialVersionUID = 23L;


    /**
     * 

Constructor for RemoveSelectedVariablesWrapper.

* * @param data a {@link edu.cmu.tetradapp.model.DataWrapper} object * @param params a {@link edu.cmu.tetrad.util.Parameters} object */ public RemoveSelectedVariablesWrapper(DataWrapper data, Parameters params) { if (data == null) { throw new NullPointerException("The givan data must not be null"); } DataModel model = data.getSelectedDataModel(); if (model instanceof DataSet) { this.setDataModel(RemoveSelectedVariablesWrapper.createRectangularModel(((DataSet) model).copy())); } else if (model instanceof ICovarianceMatrix) { this.setDataModel(RemoveSelectedVariablesWrapper.createCovarianceModel((ICovarianceMatrix) model)); } else { throw new IllegalArgumentException("Expecting a rectangular data " + "set or a covariance matrix."); } this.setSourceGraph(data.getSourceGraph()); LogDataUtils.logDataModelList("Parent data restricted to selected variables only.", getDataModelList()); } /** * Generates a simple exemplar of this class to test serialization. * * @return a {@link edu.cmu.tetradapp.model.PcRunner} object * @see TetradSerializableUtils */ public static PcRunner serializableInstance() { return PcRunner.serializableInstance(); } private static DataModel createRectangularModel(DataSet data) { for (int i = data.getNumColumns() - 1; i >= 0; i--) { if (data.isSelected(data.getVariable(i))) { data.removeColumn(i); } } return data; } private static DataModel createCovarianceModel(ICovarianceMatrix data) { int numSelected = 0; for (Node node : data.getVariables()) { if (data.isSelected(node)) { numSelected++; } } int[] selectedIndices = new int[numSelected]; String[] nodeNames = new String[numSelected]; int index = -1; for (int i = 0; i < data.getVariables().size(); i++) { Node node = data.getVariables().get(i); if (!data.isSelected(node)) { ++index; selectedIndices[index] = i; nodeNames[index] = node.getName(); } } Matrix matrix = data.getMatrix(); Matrix newMatrix = matrix.getSelection( selectedIndices, selectedIndices).copy(); return new CovarianceMatrix(DataUtils.createContinuousVariables(nodeNames), newMatrix, data.getSampleSize()); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy