All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.cmu.tetrad.data.BoxDataSet Maven / Gradle / Ivy

The newest version!
///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below.       //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,       //
// 2007, 2008, 2009, 2010, 2014, 2015, 2022 by Peter Spirtes, Richard        //
// Scheines, Joseph Ramsey, and Clark Glymour.                               //
//                                                                           //
// This program is free software; you can redistribute it and/or modify      //
// it under the terms of the GNU General Public License as published by      //
// the Free Software Foundation; either version 2 of the License, or         //
// (at your option) any later version.                                       //
//                                                                           //
// This program is distributed in the hope that it will be useful,           //
// but WITHOUT ANY WARRANTY; without even the implied warranty of            //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             //
// GNU General Public License for more details.                              //
//                                                                           //
// You should have received a copy of the GNU General Public License         //
// along with this program; if not, write to the Free Software               //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA //
///////////////////////////////////////////////////////////////////////////////
package edu.cmu.tetrad.data;

import edu.cmu.tetrad.graph.Node;
import edu.cmu.tetrad.util.*;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serial;
import java.text.NumberFormat;
import java.util.*;

/**
 * Wraps a DataBox in such a way that mixed data sets can be stored. The type of each column must be specified by a
 * Variable object, which must be either a
 * ContinuousVariable or a DiscreteVariable. This
 * class violates object orientation in that the underlying data matrix is retrievable using the getDoubleData() method.
 * This is allowed so that external calculations may be performed on large datasets without having to allocate extra
 * memory. If this matrix needs to be modified externally, please consider making a copy of it first, using the
 * TetradMatrix copy() method.
 * 

* The data set may be given a name; this name is not used internally. *

* The data set has a list of variables associated with it, as described above. This list is coordinated with the stored * data, in that data for the i'th variable will be in the i'th column. *

* A subset of variables in the data set may be designated as selected. This selection set is stored with the data set * and may be manipulated using the * select and deselect methods. *

* A multiplicity m_i may be associated with each case c_i in the dataset, which is interpreted to mean that that c_i * occurs m_i times in the dataset. *

* Knowledge may be associated with the data set, using the * setKnowledge method. This knowledge is not used internally to * the data set, but it may be retrieved by algorithms and used. *

* * @author josephramsey * @version $Id: $Id * @see edu.cmu.tetrad.data.Variable * @see Knowledge */ public final class BoxDataSet implements DataSet { @Serial private static final long serialVersionUID = 23L; /** * Case ID's. These are strings associated with some or all of the cases of the dataset. */ private final Map caseIds = new HashMap<>(); /** * The name of the data model. This is not used internally; it is only here in case an external class wants this * dataset to have a name. * * @serial */ private Map columnToTooltip; /** * The name of the data model. This is not used internally; it is only here in case an external class wants this * dataset to have a name. */ private String name = ""; /** * The list of variables. These correspond columnwise to the columns of * data. */ private List variables; /** * The container storing the data. Rows are cases; columns are variables. The order of columns is coordinated with * the order of variables in getVariables(). * * @serial */ private DataBox dataBox; /** * The set of selected variables. * * @serial */ private Set selection = new HashSet<>(); /** * A map from cases to case multipliers. If a case is not in the domain of this map, its case multiplier is by * default 1. This is the number of repetitions of the case in the dataset. The sample size is obtained by summing * over these multipliers. * * @serial */ private Map multipliers = new HashMap<>(); /** * The knowledge associated with this data. * * @serial */ private Knowledge knowledge = new Knowledge(); /** * The number formatter used for printing out continuous values. */ private transient NumberFormat nf = NumberFormatUtil.getInstance().getNumberFormat(); /** * The character used as a delimiter when the dataset is printed. */ private char outputDelimiter = '\t'; /** * Constructs a new data set with the given number of rows and columns, with all values set to missing. * * @param dataBox The data box. * @param variables The variables. */ public BoxDataSet(DataBox dataBox, List variables) { this.dataBox = dataBox; this.variables = new ArrayList<>(variables); if (dataBox.numCols() != variables.size()) { throw new IllegalArgumentException("Number of columns must match the number of variables."); } } /** * Makes of copy of the given data set. * * @param dataSet The data set to copy. */ public BoxDataSet(BoxDataSet dataSet) { this.name = dataSet.name; this.variables = new LinkedList<>(dataSet.variables); this.dataBox = dataSet.dataBox.copy(); this.selection = new HashSet<>(dataSet.selection); this.multipliers = new HashMap<>(dataSet.multipliers); this.knowledge = dataSet.knowledge.copy(); } /** * Generates a simple exemplar of this class to test serialization. * * @return A simple exemplar of this class. */ public static BoxDataSet serializableInstance() { List vars = new ArrayList<>(); for (int i = 0; i < 4; i++) { vars.add(new ContinuousVariable("X" + i)); } return new BoxDataSet(new ShortDataBox(4, 4), vars); } /** * Writes the object to the specified ObjectOutputStream. * * @param out The ObjectOutputStream to write the object to. * @throws IOException If an I/O error occurs. */ @Serial private void writeObject(ObjectOutputStream out) throws IOException { try { out.defaultWriteObject(); } catch (IOException e) { TetradLogger.getInstance().log("Failed to serialize object: " + getClass().getCanonicalName() + ", " + e.getMessage()); throw e; } } /** * Reads the object from the specified ObjectInputStream. This method is used during deserialization * to restore the state of the object. * * @param in The ObjectInputStream to read the object from. * @throws IOException If an I/O error occurs. * @throws ClassNotFoundException If the class of the serialized object cannot be found. */ @Serial private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException { try { in.defaultReadObject(); } catch (IOException e) { TetradLogger.getInstance().log("Failed to deserialize object: " + getClass().getCanonicalName() + ", " + e.getMessage()); throw e; } } /** * Attempts to translate element into a double value, returning it if successful, otherwise throwing an * exception. To be successful, the object must be either a Number or a String. * * @throws IllegalArgumentException if the translation cannot be made. The reason is in the message. */ private static double getValueFromObjectContinuous(Object element) { if ("*".equals(element) || "".equals(element)) { return ContinuousVariable.getDoubleMissingValue(); } else if (element instanceof Number) { return ((Number) element).doubleValue(); } else if (element instanceof String) { try { return Double.parseDouble((String) element); } catch (NumberFormatException e) { return ContinuousVariable.getDoubleMissingValue(); } } else { throw new IllegalArgumentException( "The argument 'element' must be " + "either a Number or a String."); } } /** *

Getter for the field columnToTooltip.

* * @return a {@link java.util.Map} object */ public Map getColumnToTooltip() { return this.columnToTooltip; } /** * Gets the name of the data set. * * @return a {@link java.lang.String} object */ public String getName() { return this.name; } /** * {@inheritDoc} *

* Sets the name of the data set. */ public void setName(String name) { if (name == null) { return; // throw new NullPointerException("Name must not be null."); } this.name = name; } /** *

getNumColumns.

* * @return the number of variables in the data set. */ public int getNumColumns() { return this.variables.size(); } /** *

getNumRows.

* * @return the number of rows in the rectangular data set, which is the maximum of the number of rows in the list of * wrapped columns. */ public int getNumRows() { return this.dataBox.numRows(); } /** * {@inheritDoc} *

* Sets the value at the given (row, column) to the given int value, assuming the variable for the column is * discrete. */ public void setInt(int row, int column, int value) { ensureRows(row + 1); Node variable = getVariable(column); if (!(variable instanceof DiscreteVariable _variable)) { throw new IllegalArgumentException( "Can only set ints for discrete columns."); } if (value < 0 && value != -99) { throw new IllegalArgumentException( "Value must be a positive integer: " + value); } if (value >= _variable.getNumCategories()) { if (_variable.isAccommodateNewCategories()) { accomodateIndex(_variable, value); } else { throw new IllegalArgumentException( "Not a value for that variable: " + value); } } try { setIntPrivate(row, column, value); } catch (Exception e) { if (row < 0 || column < 0 || row >= getNumRows() || column >= getNumColumns()) { throw new IllegalArgumentException( "Row or columns out of range."); } } } /** * {@inheritDoc} *

* Sets the value at the given (row, column) to the given double value, assuming the variable for the column is * continuous. */ public void setDouble(int row, int column, double value) { ensureRows(row + 1); try { this.dataBox.set(row, column, value); } catch (Exception e) { if (row < 0 || column < 0 || row >= getNumRows() || column >= getNumColumns()) { throw new IllegalArgumentException( "Row or columns out of range."); } } } /** * {@inheritDoc} */ public Object getObject(int row, int col) { Object variable = getVariable(col); if (variable instanceof ContinuousVariable) { return getDouble(row, col); } else if (variable instanceof DiscreteVariable _variable) { if (_variable.isCategoryNamesDisplayed()) { return _variable.getCategory(getInt(row, col)); } else { return getInt(row, col); } } throw new IllegalArgumentException("Not a row/col in this data set: " + row + ", " + col); } /** * {@inheritDoc} */ public void setObject(int row, int col, Object value) { Object variable = getVariable(col); if (variable instanceof ContinuousVariable) { setDouble(row, col, BoxDataSet.getValueFromObjectContinuous(value)); } else if (variable instanceof DiscreteVariable) { setInt(row, col, getValueFromObjectDiscrete(value, (DiscreteVariable) variable)); } else { throw new IllegalArgumentException( "Expecting either a continuous " + "or a discrete variable."); } } /** *

getSelectedIndices.

* * @return the indices of the currently selected variables. */ public int[] getSelectedIndices() { List variables = getVariables(); Set selection = getSelection(); int[] indices = new int[selection.size()]; int j = -1; for (int i = 0; i < variables.size(); i++) { if (selection.contains(variables.get(i))) { indices[++j] = i; } } return indices; } /** * {@inheritDoc} *

* Adds the given variable to the data set, increasing the number of columns by one, moving columns i >= * index to column i + 1, and inserting a column of missing values at column i. */ public void addVariable(Node variable) { if (this.variables.contains(variable)) { throw new IllegalArgumentException("Expecting a new variable: " + variable); } try { this.variables.add(variable); } catch (Exception e) { e.printStackTrace(); } resize(this.dataBox.numRows(), this.variables.size()); int col = this.dataBox.numCols() - 1; for (int i = 0; i < this.dataBox.numRows(); i++) { this.dataBox.set(i, col, null); } } /** * {@inheritDoc} *

* Adds the given variable to the dataset, increasing the number of columns by one, moving columns i >= * index to column i + 1, and inserting a column of missing values at column i. */ public void addVariable(int index, Node variable) { if (this.variables.contains(variable)) { throw new IllegalArgumentException("Expecting a new variable."); } if (index < 0 || index > this.variables.size()) { throw new IndexOutOfBoundsException("Index must in (0, #vars)."); } this.variables.add(index, variable); resize(this.dataBox.numRows(), this.variables.size()); Number[][] _data = new Number[this.dataBox.numRows()][this.dataBox.numCols()]; for (int j = 0; j < this.dataBox.numCols(); j++) { if (j < index) { for (int i = 0; i < this.dataBox.numRows(); i++) { _data[i][j] = this.dataBox.get(i, j); } } else if (j == index) { for (int i = 0; i < this.dataBox.numRows(); i++) { _data[i][j] = null; } } else { for (int i = 0; i < this.dataBox.numRows(); i++) { _data[i][j] = this.dataBox.get(i, j - 1); } } } } /** * {@inheritDoc} * *

getVariable.

*/ public Node getVariable(int col) { return this.variables.get(col); } /** * {@inheritDoc} */ public int getColumn(Node variable) { return this.variables.indexOf(variable); } /** * {@inheritDoc} *

* Changes the variable for the given column from from to * to. Supported currently only for discrete variables. */ public void changeVariable(Node from, Node to) { if (!(from instanceof DiscreteVariable _from && to instanceof DiscreteVariable _to)) { throw new IllegalArgumentException( "Only discrete variables supported."); } int col = this.variables.indexOf(_from); List oldCategories = _from.getCategories(); List newCategories = _to.getCategories(); int[] indexArray = new int[oldCategories.size()]; for (int i = 0; i < oldCategories.size(); i++) { indexArray[i] = newCategories.indexOf(oldCategories.get(i)); } for (int i = 0; i < getNumRows(); i++) { if (this.dataBox.get(i, col) == null) { break; } int value = getInt(i, col); int newIndex = 0; try { newIndex = indexArray[value]; } catch (Exception e) { e.printStackTrace(); } if (newIndex == -1) { this.dataBox.set(i, col, null); } else { setInt(i, col, newIndex); } } this.variables.set(col, _to); } /** * {@inheritDoc} */ public Node getVariable(String varName) { for (Node variable1 : this.variables) { if (variable1.getName().equals(varName)) { return variable1; } } return null; } /** *

Getter for the field variables.

* * @return (a copy of) the List of Variables for the data set, in the order of their columns. */ public List getVariables() { return new LinkedList<>(this.variables); } /** *

Getter for the field knowledge.

* * @return a copy of the knowledge associated with this data set. (Cannot be null.) */ public Knowledge getKnowledge() { return this.knowledge.copy(); } /** * {@inheritDoc} *

* Sets knowledge to be associated with this data set. May not be null. */ public void setKnowledge(Knowledge knowledge) { if (knowledge == null) { throw new NullPointerException(); } this.knowledge = knowledge.copy(); } /** *

getVariableNames.

* * @return (a copy of) the List of Variables for the data set, in the order of their columns. */ public List getVariableNames() { List vars = getVariables(); List names = new ArrayList<>(); for (Node variable : vars) { String name = variable.getName(); names.add(name); } return names; } /** * {@inheritDoc} *

* Marks the given column as selected if 'selected' is true or deselected if 'selected' is false. */ public void setSelected(Node variable, boolean selected) { if (selected) { if (this.variables.contains(variable)) { getSelection().add(variable); } } else if (this.variables.contains(variable)) { getSelection().remove(variable); } } /** * Marks all variables as deselected. */ public void clearSelection() { getSelection().clear(); } /** * {@inheritDoc} *

* Ensures that the dataset has at least the number of rows, adding rows if necessary to make that the case. The new * rows will be filled with missing values. */ public void ensureRows(int rows) { if (rows > getNumRows()) { resize(rows, getNumColumns()); } } /** * {@inheritDoc} *

* Ensures that the dataset has at least the given number of columns, adding continuous variables with unique names * until that is true. The new columns will be filled with missing values. */ public void ensureColumns(int columns, List excludedVariableNames) { for (int col = getNumColumns(); col < columns; col++) { int i = 0; String _name; while (true) { _name = "X" + (++i); if (getVariable(_name) == null && !excludedVariableNames.contains(_name)) { ContinuousVariable variable = new ContinuousVariable(_name); addVariable(variable); resize(getNumRows(), getNumColumns()); break; } } } } /** * {@inheritDoc} */ @Override public boolean existsMissingValue() { for (int i = 0; i < getNumRows(); i++) { for (int j = 0; j < getNumColumns(); j++) { if (this.variables.get(j) instanceof ContinuousVariable) { if (Double.isNaN(getDouble(i, j))) return true; } if (this.variables.get(j) instanceof DiscreteVariable) { if (getInt(i, j) == -99) return true; } } } return false; } /** * {@inheritDoc} */ public boolean isSelected(Node variable) { return getSelection().contains(variable); } /** * {@inheritDoc} *

* Removes the column for the variable at the given index, reducing the number of columns by one. */ public void removeColumn(int index) { if (index < 0 || index >= this.variables.size()) { throw new IllegalArgumentException("Not a column in this data set: " + index); } this.variables.remove(index); int[] rows = new int[this.dataBox.numRows()]; for (int i = 0; i < this.dataBox.numRows(); i++) { rows[i] = i; } int[] cols = new int[this.dataBox.numCols() - 1]; int m = -1; for (int i = 0; i < this.dataBox.numCols(); i++) { if (i != index) { cols[++m] = i; } } this.dataBox = viewSelection(rows, cols); } private DataBox viewSelection(int[] rows, int[] cols) { return this.dataBox.viewSelection(rows, cols); } /** * {@inheritDoc} *

* Removes the columns for the given variable from the dataset, reducing the number of columns by one. */ @Override public void removeColumn(Node variable) { int index = this.variables.indexOf(variable); if (index != -1) { removeColumn(index); } } /** * {@inheritDoc} *

* Creates and returns a dataset consisting of those variables in the list vars. Vars must be a subset of the * variables of this DataSet. The ordering of the elements of vars will be the same as in the list of variables in * this DataSet. */ public DataSet subsetColumns(List vars) { if (!(getVariables().containsAll(vars))) { List missingVars = new ArrayList<>(vars); missingVars.removeAll(getVariables()); throw new IllegalArgumentException( "All vars must be original vars: " + missingVars); } int[] rows = new int[this.dataBox.numRows()]; for (int i = 0; i < rows.length; i++) { rows[i] = i; } int[] cols = new int[vars.size()]; for (int j = 0; j < cols.length; j++) { cols[j] = getVariables().indexOf(vars.get(j)); } DataBox _dataBox = viewSelection(rows, cols); BoxDataSet _dataSet = new BoxDataSet(_dataBox, vars); // _dataSet.name = name + "_copy"; _dataSet.variables = vars; _dataSet.selection = new HashSet<>(); _dataSet.multipliers = new HashMap<>(this.multipliers); // Might have to delete some knowledge. _dataSet.knowledge = this.knowledge.copy(); return _dataSet; } /** *

isContinuous.

* * @return true iff this is a continuous data set--that is, if every column in it is continuous. (By implication, * empty datasets are both discrete and continuous.) */ public boolean isContinuous() { for (int i = 0; i < getNumColumns(); i++) { Node variable = this.variables.get(i); if (!(variable instanceof ContinuousVariable)) { return false; } } return true; } /** *

isDiscrete.

* * @return true iff this is a discrete data set--that is, if every column in it is discrete. (By implication, empty * datasets are both discrete and continuous.) */ public boolean isDiscrete() { for (int i = 0; i < getNumColumns(); i++) { Node column = this.variables.get(i); if (!(column instanceof DiscreteVariable)) { return false; } } return true; } /** *

isMixed.

* * @return true if this is a mixed data set--that is, if it contains at least one continuous column and one discrete * columnn. */ public boolean isMixed() { int numContinuous = 0; int numDiscrete = 0; for (int i = 0; i < getNumColumns(); i++) { Node column = this.variables.get(i); if (column instanceof ContinuousVariable) { numContinuous++; } else if (column instanceof DiscreteVariable) { numDiscrete++; } else { throw new IllegalArgumentException( "Column not of type continuous" + "or of type discrete; can't classify this data set."); } } return numContinuous > 0 && numDiscrete > 0; } /** *

getCorrelationMatrix.

* * @return the correlation matrix for this dataset. Defers to * Statistic.covariance() in the COLT matrix library, so it * inherits the handling of missing values from that library--that is, any off-diagonal correlation involving a * column with a missing value is Double.NaN, although all of the on-diagonal elements are 1.0. If that's not the * desired behavior, missing values can be removed or imputed first. */ public Matrix getCorrelationMatrix() { if (!isContinuous()) { throw new IllegalStateException("Not a continuous data set."); } return MatrixUtils.convertCovToCorr(getCovarianceMatrix()); } /** *

getCovarianceMatrix.

* * @return the covariance matrix for this dataset. Defers to * Statistic.covariance() in the COLT matrix library, so it * inherits the handling of missing values from that library--that is, any covariance involving a column with a * missing value is Double.NaN. If that's not the desired behavior, missing values can be removed or imputed first. */ public Matrix getCovarianceMatrix() { if (!isContinuous()) { throw new IllegalStateException("Not a continuous data set."); } if (getNumColumns() == 0) return new Matrix(0, 0); return new CovarianceMatrix(this).getMatrix(); } /** * {@inheritDoc} */ public int getInt(int row, int column) { Number value = this.dataBox.get(row, column); if (value == null) { return DiscreteVariable.MISSING_VALUE; } else { return value.intValue(); } } /** * {@inheritDoc} */ public double getDouble(int row, int column) { Number value = this.dataBox.get(row, column); if (value == null) { return ContinuousVariable.getDoubleMissingValue(); } else { return value.doubleValue(); } } /** *

toString.

* * @return a string, suitable for printing, of the dataset. Lines are separated by '\n', tokens in the line by * whatever character is set in the * setOutputDelimiter() method. The list of variables is printed * first, followed by one line for each case. This method should probably not be used for saving to files. If that's * your goal, use the DataSavers class instead. * @see #setOutputDelimiter(Character) * @see DataWriter */ public String toString() { StringBuilder buf = new StringBuilder(); List variables = getVariables(); buf.append("\n"); for (int i = 0; i < getNumColumns(); i++) { buf.append(variables.get(i)); if (i < getNumColumns() - 1) { buf.append(this.outputDelimiter); } } buf.append("\n"); for (int i = 0; i < getNumRows(); i++) { for (int j = 0; j < getNumColumns(); j++) { Node variable = getVariable(j); if (variable instanceof ContinuousVariable) { if (Double.isNaN(getDouble(i, j))) { buf.append("*"); } else { buf.append(getNumberFormat().format(getDouble(i, j))); } if (j < getNumColumns() - 1) { buf.append(this.outputDelimiter); } } else if (variable instanceof DiscreteVariable _variable) { int value = getInt(i, j); if (value == -99) { buf.append("*"); } else { String category = _variable.getCategory(value); if (category.indexOf(this.outputDelimiter) == -1) { buf.append(category); } else { buf.append("\"").append(category).append("\""); } } if (j < getNumColumns() - 1) { buf.append(this.outputDelimiter); } } else { throw new IllegalStateException( "Expecting either a continuous " + "variable or a discrete variable: variable = " + variable + " type = " + variable.getClass()); } } buf.append("\n"); } buf.append("\n"); if (this.knowledge != null && !this.knowledge.isEmpty()) { buf.append(this.knowledge); } return buf.toString(); } /** *

getDoubleData.

* * @return a copy of the underlying COLT TetradMatrix matrix, containing all of the data in this dataset, discrete * data included. Discrete data will be represented by ints cast to doubles. Rows in this matrix are cases, and * columns are variables. The list of variable, in the order in which they occur in the matrix, is given by * getVariables(). *

* If isMultipliersCollapsed() returns false, multipliers in the dataset are first expanded before returning the * matrix, so the number of rows in the returned matrix may not be the same as the number of rows in this dataset. * @throws java.lang.IllegalStateException if this is not a continuous data set. * @see #getVariables */ public Matrix getDoubleData() { Matrix copy = new Matrix(this.dataBox.numRows(), this.dataBox.numCols()); for (int i = 0; i < this.dataBox.numRows(); i++) { for (int j = 0; j < this.dataBox.numCols(); j++) { Number number = this.dataBox.get(i, j); if (number == null) { copy.set(i, j, Double.NaN); } else { copy.set(i, j, number.doubleValue()); } } } return copy; } /** *

subsetColumns.

* * @param indices an array of {@link int} objects * @return a new data set in which the the column at indices[i] is placed at index i, for i = 0 to indices.length - * 1. (Moved over from Purify.) */ public DataSet subsetColumns(int[] indices) { List variables = getVariables(); List _variables = new LinkedList<>(); for (int index : indices) { _variables.add(variables.get(index)); } int[] rows = new int[this.dataBox.numRows()]; for (int i = 0; i < rows.length; i++) { rows[i] = i; } DataBox _data = viewSelection(rows, indices); BoxDataSet _dataSet = new BoxDataSet(_data, _variables); // _dataSet.name = name + "_copy"; _dataSet.name = this.name; _dataSet.variables = _variables; _dataSet.selection = new HashSet<>(); _dataSet.multipliers = new HashMap<>(this.multipliers); // Might have to delete some knowledge. _dataSet.knowledge = this.knowledge.copy(); return _dataSet; } /** *

subsetRows.

* * @param rows an array of {@link int} objects * @return a {@link edu.cmu.tetrad.data.DataSet} object */ public DataSet subsetRows(int[] rows) { int[] cols = new int[this.dataBox.numCols()]; for (int i = 0; i < cols.length; i++) { cols[i] = i; } DataBox newBox = this.dataBox.viewSelection(rows, cols); BoxDataSet _data = new BoxDataSet(this); _data.dataBox = newBox; return _data; } /** * {@inheritDoc} */ @Override public DataSet subsetRowsColumns(int[] rows, int[] columns) { List variables = getVariables(); List _variables = new LinkedList<>(); for (int index : columns) { _variables.add(variables.get(index)); } DataBox _data = viewSelection(rows, columns); BoxDataSet _dataSet = new BoxDataSet(_data, _variables); // _dataSet.name = name + "_copy"; _dataSet.name = this.name; _dataSet.variables = _variables; _dataSet.selection = new HashSet<>(); _dataSet.multipliers = new HashMap<>(this.multipliers); // Might have to delete some knowledge. _dataSet.knowledge = this.knowledge.copy(); return _dataSet; } /** * {@inheritDoc} *

* Removes the given columns from the data set. */ @Override public void removeCols(int[] cols) { int[] rows = new int[this.dataBox.numRows()]; for (int i = 0; i < this.dataBox.numRows(); i++) { rows[i] = i; } int[] retainedCols = new int[this.variables.size() - cols.length]; int i = -1; for (int j = 0; j < this.variables.size(); j++) { if (Arrays.binarySearch(cols, j) < 0) { retainedCols[++i] = j; } } List retainedVars = new LinkedList<>(); for (int retainedCol : retainedCols) { retainedVars.add(this.variables.get(retainedCol)); } this.dataBox = viewSelection(rows, retainedCols); this.variables = retainedVars; this.selection = new HashSet<>(); this.multipliers = new HashMap<>(this.multipliers); this.knowledge = this.knowledge.copy(); // Might have to delete some knowledge. } /** * Removes the given rows from the data set. * * @param selectedRows an array of {@link int} objects */ public void removeRows(int[] selectedRows) { int[] cols = new int[this.dataBox.numCols()]; for (int i = 0; i < this.dataBox.numCols(); i++) { cols[i] = i; } int[] retainedRows = new int[this.dataBox.numRows() - selectedRows.length]; int i = -1; for (int j = 0; j < this.dataBox.numRows(); j++) { if (Arrays.binarySearch(selectedRows, j) < 0) { retainedRows[++i] = j; } } this.dataBox = viewSelection(retainedRows, cols); this.selection = new HashSet<>(); this.multipliers = new HashMap<>(this.multipliers); this.knowledge = this.knowledge.copy(); // Might have to delete some knowledge. } /** * {@inheritDoc} */ @Override public boolean equals(Object obj) { if (obj == null) { return false; } else if (this == obj) { return true; } else if (!(obj instanceof BoxDataSet)) { return false; } BoxDataSet otherDataSet = (BoxDataSet) obj; // compare number of columns if (getNumColumns() != otherDataSet.getNumColumns()) { return false; } // compare number of rows if (getNumRows() != otherDataSet.getNumRows()) { return false; } // compare nodes if (!getVariables().equals(otherDataSet.getVariables())) { return false; } Node[] nodes = getVariables().toArray(new Node[0]); for (int i = 0; i < getNumRows(); i++) { for (int j = 0; j < getNumColumns(); j++) { Node variable = nodes[j]; double val = getDouble(i, j); double otherVal = otherDataSet.getDouble(i, j); if (variable instanceof ContinuousVariable) { if (Double.isNaN(val) ^ Double.isNaN(otherVal)) { return false; } else if (!(Double.isNaN(val) && Double.isNaN(otherVal))) { if (Double.compare(Double.parseDouble(this.nf.format(val)), Double.parseDouble(this.nf.format(otherVal))) != 0) { return false; } } } else { if (!(val == otherVal)) { return false; } } } } return true; } /** * {@inheritDoc} */ @Override public DataSet copy() { return new BoxDataSet(this); } /** * {@inheritDoc} */ @Override public DataSet like() { return new BoxDataSet(this.dataBox.like(), this.variables); } /** * {@inheritDoc} *

* Sets the character ('\t', ' ', ',', for instance) that is used to delimit tokens when the data set is printed out * using the toString() method. * * @see #toString */ public void setOutputDelimiter(Character character) { this.outputDelimiter = character; } /** * Randomly permutes the rows of the dataset. */ public void permuteRows() { List permutation = new ArrayList<>(); for (int i = 0; i < getNumRows(); i++) { permutation.add(i); } RandomUtil.shuffle(permutation); DataBox data2 = this.dataBox.like(); for (int i = 0; i < getNumRows(); i++) { for (int j = 0; j < getNumColumns(); j++) { data2.set(i, j, this.dataBox.get(permutation.get(i), j)); } } this.dataBox = data2; } private void setIntPrivate(int row, int col, int value) { this.dataBox.set(row, col, value); } /** * Resizes the data to the given dimensions. Data that does not fall within the new dimensions is lost, and * positions in the redimensioned data that have no correlates in the old data are set to missing (that is, * Double.NaN). * * @param rows The number of rows in the redimensioned data. * @param cols The number of columns in the redimensioned data. */ private void resize(int rows, int cols) { MixedDataBox newBox = new MixedDataBox(this.variables, rows); for (int j = 0; j < cols; j++) { for (int i = 0; i < rows; i++) { if (i < this.dataBox.numRows() && j < this.dataBox.numCols()) { newBox.set(i, j, this.dataBox.get(i, j)); } } } this.dataBox = newBox; } /** * @return the set of selected nodes, creating a new set if necessary. */ private Set getSelection() { if (this.selection == null) { this.selection = new HashSet<>(); } return this.selection; } /** * Attempts to translate element into an int value, returning it if successful, otherwise throwing an * exception. To be successful, the object must be either a Number or a String. * * @throws IllegalArgumentException if the translation cannot be made. The reason is in the message. */ private int getValueFromObjectDiscrete(Object element, DiscreteVariable variable) { if ("*".equals(element) || "".equals(element)) { return DiscreteVariable.MISSING_VALUE; } if (variable.isAccommodateNewCategories()) { if (element instanceof Number) { int index = ((Number) element).intValue(); if (!variable.checkValue(index)) { if (index >= variable.getNumCategories()) { accomodateIndex(variable, index); } else { throw new IllegalArgumentException("Variable " + variable + " is not accepting " + "new categories. Problem category is " + "."); } } return index; } else if (element instanceof String label) { variable = accomodateCategory(variable, label); int index = variable.getIndex(label); if (index == -1) { throw new IllegalArgumentException( "Not a category for this variable: " + -1); } return index; } else { throw new IllegalArgumentException( "The argument 'element' must be " + "either a Number or a String."); } } else if (element instanceof Number) { int index = ((Number) element).intValue(); if (!variable.checkValue(index)) { return DiscreteVariable.MISSING_VALUE; } return index; } else if (element instanceof String label) { int index = variable.getIndex(label); if (index == -1) { return DiscreteVariable.MISSING_VALUE; } return index; } else { throw new IllegalArgumentException( "The argument 'element' must be " + "either a Number or a String."); } } /** * If the given category is not already a category for a cagetory, augments the range of category by one and sets * the category of the new value to the given category. */ private DiscreteVariable accomodateCategory(DiscreteVariable variable, String category) { if (category == null) { throw new NullPointerException(); } List categories = variable.getCategories(); if (!categories.contains(category)) { List newCategories = new LinkedList<>(categories); newCategories.add(category); DiscreteVariable newVariable = new DiscreteVariable(variable.getName(), newCategories); changeVariable(variable, newVariable); return newVariable; } return variable; } /** * Increases the number of categories if necessary to make sure that this variable has the given index. */ private void accomodateIndex(DiscreteVariable variable, int index) { if (!variable.isAccommodateNewCategories()) { throw new IllegalArgumentException("This variable is not set " + "to accomodate new categories."); } if (index >= variable.getNumCategories()) { adjustCategories(variable, index + 1); } } /** * Adjusts the size of the categories list to match the getModel number of categories. If the list is too short, it * is padded with default categories. If it is too long, the extra categories are removed. */ private void adjustCategories(DiscreteVariable variable, int numCategories) { List categories = new LinkedList<>(variable.getCategories()); List newCategories = new LinkedList<>(categories); if (categories.size() > numCategories) { if (variable.getCategories().size() > 0) { newCategories.subList(0, variable.getCategories().size()).clear(); } } else if (categories.size() < numCategories) { for (int i = categories.size(); i < numCategories; i++) { String category = DataUtils.defaultCategory(i); if (categories.contains(category)) { continue; } newCategories.add(category); } } DiscreteVariable to = new DiscreteVariable(variable.getName(), newCategories); changeVariable(variable, to); } /** *

getNumberFormat.

* * @return the number format, which by default is the one at * NumberFormatUtil.getInstance().getNumberFormat(), but can be * set by the user if desired. * @see #setNumberFormat(java.text.NumberFormat) */ public NumberFormat getNumberFormat() { if (this.nf == null) { this.nf = NumberFormatUtil.getInstance().getNumberFormat(); } return this.nf; } /** * {@inheritDoc} *

* Sets the number format to be used when printing out the data set. The default is the one at */ public void setNumberFormat(NumberFormat nf) { if (nf == null) { throw new NullPointerException(); } this.nf = nf; } /** *

Getter for the field dataBox.

* * @return the data box that holds the data for this data set. */ public DataBox getDataBox() { return this.dataBox; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy