All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.pitt.csb.mgm.TriDiagonalTransformer Maven / Gradle / Ivy

The newest version!
package edu.pitt.csb.mgm;

import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.NonSquareMatrixException;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.util.FastMath;

import java.util.Arrays;


/**
 * Class transforming a symmetrical matrix to tridiagonal shape.
 * 

A symmetrical m × m matrix A can be written as the product of three matrices: * A = Q × T × QT with Q an orthogonal matrix and T a symmetrical tridiagonal matrix. Both Q and * T are m × m matrices.> 0 *

This implementation only uses the upper part of the matrix, the part below the * diagonal is not accessed at all.> 0 *

Transformation to tridiagonal shape is often not a goal by itself, but it is * an intermediate step in more general decomposition algorithms like {@link EigenDecomposition eigen decomposition}. * This class is therefore intended for internal use by the library and is not public. As a consequence of this * explicitly limited scope, many methods directly returns references to internal arrays, not copies.> 0 * * @since 2.0 */ class TriDiagonalTransformer { /** * Householder vectors. */ private final double[][] householderVectors; /** * Main diagonal. */ private final double[] main; /** * Secondary diagonal. */ private final double[] secondary; /** * Cached value of Q. */ private RealMatrix cachedQ; /** * Cached value of Qt. */ private RealMatrix cachedQt; /** * Cached value of T. */ private RealMatrix cachedT; /** * Build the transformation to tridiagonal shape of a symmetrical matrix. *

The specified matrix is assumed to be symmetrical without any check. * Only the upper triangular part of the matrix is used.> 0 * * @param matrix Symmetrical matrix to transform. * @throws NonSquareMatrixException if the matrix is not square. */ TriDiagonalTransformer(RealMatrix matrix) { if (!matrix.isSquare()) { throw new NonSquareMatrixException(matrix.getRowDimension(), matrix.getColumnDimension()); } int m = matrix.getRowDimension(); this.householderVectors = matrix.getData(); this.main = new double[m]; this.secondary = new double[m - 1]; this.cachedQ = null; this.cachedQt = null; this.cachedT = null; // transform matrix transform(); } /** * Returns the matrix Q of the transform. *

Q is an orthogonal matrix, i.e. its transpose is also its inverse.> 0 * * @return the Q matrix */ public RealMatrix getQ() { if (this.cachedQ == null) { this.cachedQ = getQT().transpose(); } return this.cachedQ; } /** * Returns the transpose of the matrix Q of the transform. *

Q is an orthogonal matrix, i.e. its transpose is also its inverse.> 0 * * @return the Q matrix */ public RealMatrix getQT() { if (this.cachedQt == null) { int m = this.householderVectors.length; double[][] qta = new double[m][m]; // build up first part of the matrix by applying Householder transforms for (int k = m - 1; k >= 1; --k) { double[] hK = this.householderVectors[k - 1]; qta[k][k] = 1; if (hK[k] != 0.0) { double inv = 1.0 / (this.secondary[k - 1] * hK[k]); double beta = 1.0 / this.secondary[k - 1]; qta[k][k] = 1 + beta * hK[k]; for (int i = k + 1; i < m; ++i) { qta[k][i] = beta * hK[i]; } for (int j = k + 1; j < m; ++j) { beta = 0; for (int i = k + 1; i < m; ++i) { beta += qta[j][i] * hK[i]; } beta *= inv; qta[j][k] = beta * hK[k]; for (int i = k + 1; i < m; ++i) { qta[j][i] += beta * hK[i]; } } } } qta[0][0] = 1; this.cachedQt = MatrixUtils.createRealMatrix(qta); } // return the cached matrix return this.cachedQt; } /** * Returns the tridiagonal matrix T of the transform. * * @return the T matrix */ public RealMatrix getT() { if (this.cachedT == null) { int m = this.main.length; double[][] ta = new double[m][m]; for (int i = 0; i < m; ++i) { ta[i][i] = this.main[i]; if (i > 0) { ta[i][i - 1] = this.secondary[i - 1]; } if (i < this.main.length - 1) { ta[i][i + 1] = this.secondary[i]; } } this.cachedT = MatrixUtils.createRealMatrix(ta); } // return the cached matrix return this.cachedT; } /** * Get the Householder vectors of the transform. *

Note that since this class is only intended for internal use, * it returns directly a reference to its internal arrays, not a copy.> 0 * * @return the main diagonal elements of the B matrix */ double[][] getHouseholderVectorsRef() { return this.householderVectors; } /** * Get the main diagonal elements of the matrix T of the transform. *

Note that since this class is only intended for internal use, * it returns directly a reference to its internal arrays, not a copy.> 0 * * @return the main diagonal elements of the T matrix */ double[] getMainDiagonalRef() { return this.main; } /** * Get the secondary diagonal elements of the matrix T of the transform. *

Note that since this class is only intended for internal use, * it returns directly a reference to its internal arrays, not a copy.> 0 * * @return the secondary diagonal elements of the T matrix */ double[] getSecondaryDiagonalRef() { return this.secondary; } /** * Transform original matrix to tridiagonal form. *

Transformation is done using Householder transforms.> 0 */ private void transform() { int m = this.householderVectors.length; double[] z = new double[m]; for (int k = 0; k < m - 1; k++) { //zero-out a row and a column simultaneously double[] hK = this.householderVectors[k]; this.main[k] = hK[k]; double xNormSqr = 0; for (int j = k + 1; j < m; ++j) { double c = hK[j]; xNormSqr += c * c; } double a = (hK[k + 1] > 0) ? -FastMath.sqrt(xNormSqr) : FastMath.sqrt(xNormSqr); this.secondary[k] = a; if (a != 0.0) { // apply Householder transform from left and right simultaneously hK[k + 1] -= a; double beta = -1 / (a * hK[k + 1]); // compute a = beta A v, where v is the Householder vector // this loop is written in such a way // 1) only the upper triangular part of the matrix is accessed // 2) access is cache-friendly for a matrix stored in rows Arrays.fill(z, k + 1, m, 0); for (int i = k + 1; i < m; ++i) { double[] hI = this.householderVectors[i]; double hKI = hK[i]; double zI = hI[i] * hKI; for (int j = i + 1; j < m; ++j) { double hIJ = hI[j]; zI += hIJ * hK[j]; z[j] += hIJ * hKI; } z[i] = beta * (z[i] + zI); } // compute gamma = beta vT z / 2 double gamma = 0; for (int i = k + 1; i < m; ++i) { gamma += z[i] * hK[i]; } gamma *= beta / 2; // compute z = z - gamma v for (int i = k + 1; i < m; ++i) { z[i] -= gamma * hK[i]; } // update matrix: A = A - v zT - z vT // only the upper triangular part of the matrix is updated for (int i = k + 1; i < m; ++i) { double[] hI = this.householderVectors[i]; for (int j = i; j < m; ++j) { hI[j] -= hK[i] * z[j] + z[i] * hK[j]; } } } } this.main[m - 1] = this.householderVectors[m - 1][m - 1]; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy