repicea.stats.distributions.StandardGaussianDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of repicea-mathstats Show documentation
Show all versions of repicea-mathstats Show documentation
Mathematical and statistical methods
/*
* This file is part of the repicea library.
*
* Copyright (C) 2009-2015 Mathieu Fortin for Rouge-Epicea
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* This library is distributed with the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* Please see the license at http://www.gnu.org/copyleft/lesser.html.
*/
package repicea.stats.distributions;
import java.security.InvalidParameterException;
import repicea.math.Matrix;
import repicea.math.SymmetricMatrix;
import repicea.math.utility.GaussianUtility;
import repicea.serial.xml.PostXmlUnmarshalling;
import repicea.stats.Distribution;
import repicea.stats.StatisticalUtility;
@SuppressWarnings("serial")
public class StandardGaussianDistribution implements ContinuousDistribution, PostXmlUnmarshalling {
private static StandardGaussianDistribution Singleton;
private Matrix mu;
private Matrix sigma2;
private Matrix lowerCholTriangle;
/**
* This constructor creates a Gaussian distribution with mean mu 0 and variance 1.
*/
protected StandardGaussianDistribution() {
Matrix mu = new Matrix(1,1);
SymmetricMatrix sigma2 = new SymmetricMatrix(1);
sigma2.setValueAt(0, 0, 1d);
setMean(mu);
setVariance(sigma2);
}
/**
* This method returns the single instance of the StandardGaussianDistribution class.
* @return?a StandardGaussianDistribution instance
*/
public static StandardGaussianDistribution getInstance() {
if (Singleton == null) {
Singleton = new StandardGaussianDistribution();
}
return Singleton;
}
@Override
public boolean isMultivariate() {
return getMu().m_iRows > 1;
}
@Override
public Matrix getRandomRealization() {
Matrix mean = getMean();
Matrix standardDeviation = getStandardDeviation();
Matrix normalStandardDeviates = StatisticalUtility.drawRandomVector(standardDeviation.m_iRows, Distribution.Type.GAUSSIAN);
return mean.add(standardDeviation.multiply(normalStandardDeviates));
}
/**
* This method returns the lower triangle of the Cholesky decomposition of the variance-covariance matrix.
* @return a Matrix instance
*/
public Matrix getStandardDeviation() {
if (lowerCholTriangle == null) {
lowerCholTriangle = getSigma2().getLowerCholTriangle();
}
return lowerCholTriangle;
}
@Override
public Matrix getMean() {return getMu();}
@Override
public SymmetricMatrix getVariance() {return getSigma2();}
@Override
public Type getType() {return Distribution.Type.GAUSSIAN;}
protected void setMean(Matrix mu) {
this.mu = mu;
}
protected void setVariance(SymmetricMatrix sigma2) {
if (sigma2 != null && !sigma2.isSymmetric()) {
throw new InvalidParameterException("The variance-covariance matrix must be symmetric!");
}
this.sigma2 = sigma2;
lowerCholTriangle = null;
}
protected Matrix getMu() {return mu;}
protected SymmetricMatrix getSigma2() {return (SymmetricMatrix) sigma2;}
@Override
public boolean isParametric() {return true;}
/**
* This method returns the result of the probability density function of the distribution parameter.
* @param yValues a single double value or a Matrix instance
* @return a double
*/
@Override
public double getProbabilityDensity(Matrix yValues) {
if (yValues == null || !yValues.isTheSameDimension(getMu())) {
throw new UnsupportedOperationException("Vector y is either null or its dimensions are different from those of mu!");
} else {
if (!isMultivariate()) {
double y = yValues.getValueAt(0, 0);
double mu = getMu().getValueAt(0, 0);
double variance = getSigma2().getValueAt(0, 0);
return GaussianUtility.getProbabilityDensity(y, mu, variance);
} else {
int k = yValues.m_iRows;
Matrix residuals = yValues.subtract(getMu());
Matrix invSigma2 = getSigma2().getInverseMatrix();
return 1d / (Math.pow(2 * Math.PI, 0.5 * k) * Math.sqrt(getSigma2().getDeterminant())) * Math.exp(- 0.5 * residuals.transpose().multiply(invSigma2).multiply(residuals).getSumOfElements());
}
}
}
@Override
public void postUnmarshallingAction() {
if (!(sigma2 instanceof SymmetricMatrix)) {
setVariance(SymmetricMatrix.convertToSymmetricIfPossible(sigma2)); // MF20220824 to ensure a proper deserialization of previously saved meta models.
}
}
// @Override
// public List getQuantile(List probabilities) {
// if (probabilities == null || probabilities.isEmpty()) {
// throw new InvalidParameterException("The probabilities parameter is null or empty!");
// } else if (isMultivariate() && probabilities.size() != ((Matrix) getMean()).m_iRows) {
// throw new InvalidParameterException("The number of values does not correspond to the dimension of the distribution!");
// } else {
// List output = new ArrayList();
// if (!isMultivariate()) {
// double[] probabilityLevels = probabilities.get(0);
// double[] quantiles = new double[probabilityLevels.length];
// for (int i = 0; i < probabilityLevels.length; i++) {
// double standardizedValue = (values[0] - getMean().m_afData[0][0]) / Math.sqrt(getVariance().m_afData[0][0]);
// }
//// return GaussianUtility.getCumulativeProbability(standardizedValue);
//// } else if (values.length == 2) {
//// double std1 = Math.sqrt(getVariance().m_afData[0][0]);
//// double standardizedValue1 = (values[0] - getMean().m_afData[0][0]) / std1;
//// double std2 = Math.sqrt(getVariance().m_afData[1][1]);
//// double standardizedValue2 = (values[1] - getMean().m_afData[1][0]) / std2;
//// double correlation = getVariance().m_afData[0][1] / (std1 * std2);
//// return GaussianUtility.getBivariateCumulativeProbability(standardizedValue1, standardizedValue2, correlation);
//// }
//// }
//// return -1;
// }
// return null;
// }
// public static void main(String[] args) {
// GaussianFunction gf = new GaussianFunction();
// gf.setParameterValue(FunctionParameter.Mu, new Matrix(2,1));
// gf.setParameterValue(FunctionParameter.Sigma2, Matrix.getIdentityMatrix(2));
// gf.setVariableValue(FunctionVariable.yVector, new Matrix(2,1));
// double allo = gf.getValue();
// }
}