repicea.stats.estimates.LawOfTotalVarianceMonteCarloEstimate Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of repicea-mathstats Show documentation
Show all versions of repicea-mathstats Show documentation
Mathematical and statistical methods
/*
* This file is part of the repicea library.
*
* Copyright (C) 2009-2016 Mathieu Fortin for Rouge-Epicea
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* This library is distributed with the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* Please see the license at http://www.gnu.org/copyleft/lesser.html.
*/
package repicea.stats.estimates;
import java.util.ArrayList;
import java.util.List;
import repicea.math.Matrix;
import repicea.math.SymmetricMatrix;
import repicea.stats.sampling.PopulationUnitWithEqualInclusionProbability;
/**
* The LawOfTotalVarianceMonteCarloEstimate is a Monte Carlo estimate for random variable.
* The variance is provided by the variance of the mean estimate plus the expectation of their
* variances.
* @author Mathieu Fortin - January 2016
*/
@SuppressWarnings("serial")
public class LawOfTotalVarianceMonteCarloEstimate extends MonteCarloEstimate {
private final List realizations;
/**
* Constructor.
*/
public LawOfTotalVarianceMonteCarloEstimate() {
super();
realizations = new ArrayList();
}
/**
* This method is a surrogate for addRealization(Matrix) method.
* @param estimate a SampleEstimate instance
*/
public void addRealization(PopulationMeanEstimate estimate) {
realizations.add(estimate);
getDistribution().getRealizations().add(estimate.getMean());
}
@Override
public void addRealization(Matrix mat) {
addRealization(unformatObservation(mat));
}
@Override
protected SymmetricMatrix getVarianceFromDistribution() {
MonteCarloEstimate meanOfVariances = new MonteCarloEstimate();
MonteCarloEstimate varianceOfMeans = new MonteCarloEstimate();
for (PopulationMeanEstimate realization : realizations) {
meanOfVariances.addRealization(realization.getVariance());
varianceOfMeans.addRealization(realization.getMean());
}
return SymmetricMatrix.convertToSymmetricIfPossible(meanOfVariances.getMean().add(varianceOfMeans.getVariance()));
}
private PopulationMeanEstimate unformatObservation(Matrix formattedObservation) {
PopulationMeanEstimate estimate = new PopulationMeanEstimate();
for (int j = 0; j < formattedObservation.m_iCols; j++) {
estimate.addObservation(new PopulationUnitWithEqualInclusionProbability(j + "", formattedObservation.getSubMatrix(0, formattedObservation.m_iRows - 1, j, j)));
}
return estimate;
}
@Override
protected Matrix getMeanFromDistribution() {
Matrix mean = null;
for (PopulationMeanEstimate estimate : realizations) {
if (mean == null) {
mean = estimate.getMean();
} else {
mean = mean.add(estimate.getMean());
}
}
return mean.scalarMultiply(1d / getNumberOfRealizations());
}
}