All Downloads are FREE. Search and download functionalities are using the official Maven repository.

repicea.stats.estimators.AbstractEstimator Maven / Gradle / Ivy

There is a newer version: 1.4.3
Show newest version
/*
 * This file is part of the repicea library.
 *
 * Copyright (C) 2009-2022 Mathieu Fortin for Rouge-Epicea
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 3 of the License, or (at your option) any later version.
 *
 * This library is distributed with the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied
 * warranty of MERCHANTABILITY or FITNESS FOR A
 * PARTICULAR PURPOSE. See the GNU Lesser General Public
 * License for more details.
 *
 * Please see the license at http://www.gnu.org/copyleft/lesser.html.
 */
package repicea.stats.estimators;

import java.util.ArrayList;
import java.util.List;

import repicea.math.Matrix;
import repicea.math.utility.GaussianUtility;
import repicea.stats.data.DataSet;
import repicea.stats.estimators.AbstractEstimator.EstimatorCompatibleModel;

public abstract class AbstractEstimator

implements Estimator { /** * An interface that ensures the model instance can provide enough information. * @author Mathieu Fortin - December 2022 */ public interface EstimatorCompatibleModel { /** * Does the model have an intercept. * @return a boolean */ public boolean isInterceptModel(); /** * Return the effect names or in case of nonlinear model, the parameter names. * @return a List of strings */ public List getEffectList(); /** * The number of observations in the dataset * @return an integer */ public int getNumberOfObservations(); /** * Return the names of the other parameters (e.g. dispersion in case of negative binomial).
*
* By default, it should return an empty list. * @return a List of String */ public List getOtherParameterNames(); } protected final P model; protected AbstractEstimator(P model) { this.model = model; } @Override public DataSet getParameterEstimatesReport() { List fieldNames = new ArrayList(); fieldNames.add("Effect"); fieldNames.add("Estimate"); fieldNames.add("Std. Error"); fieldNames.add("z value"); fieldNames.add("Pr(>|z|)"); fieldNames.add("Significant"); DataSet dataSet = new DataSet(fieldNames); Matrix parameterEstimates = getParameterEstimates().getMean(); boolean varianceAvailable = false; Matrix std = null; if (getParameterEstimates().getVariance() != null) { std = getParameterEstimates().getVariance().diagonalVector().elementWisePower(0.5); varianceAvailable = true; } Object[] record = new Object[6]; boolean isWithIntercept = model.isInterceptModel(); for (int i = 0; i < parameterEstimates.m_iRows; i++) { int j = isWithIntercept ? i - 1 : i; String name; if (j < model.getEffectList().size()) { // otherwise we might be dealing with additional parameters like shape or scale parameters name = j == -1 ? "intercept" : model.getEffectList().get(j); } else { name = model.getOtherParameterNames().get(j - model.getEffectList().size()); } record[0] = name; record[1] = parameterEstimates.getValueAt(i, 0); record[2] = varianceAvailable ? std.getValueAt(i, 0) : Double.NaN; double z = varianceAvailable ? parameterEstimates.getValueAt(i, 0) / std.getValueAt(i, 0) : Double.NaN; record[3] = z; double significanceLevel = varianceAvailable ? GaussianUtility.getCumulativeProbability(Math.abs(z), true) * 2: Double.NaN; record[4] = significanceLevel; String symbol = ""; if (!Double.isNaN(significanceLevel)) { if (significanceLevel <= 0.01) { symbol = "**"; } else if (significanceLevel <= 0.05) { symbol = "*"; } else if (significanceLevel <= 0.10) { symbol = "."; } } record[5] = symbol; dataSet.addObservation(record); } return dataSet; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy