repicea.stats.estimates.JackknifeEstimate Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of repicea-mathstats Show documentation
Show all versions of repicea-mathstats Show documentation
Mathematical and statistical methods
/*
* This file is part of the repicea library.
*
* Copyright (C) 2009-2019 Mathieu Fortin for Rouge-Epicea
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* This library is distributed with the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* Please see the license at http://www.gnu.org/copyleft/lesser.html.
*/
package repicea.stats.estimates;
import java.security.InvalidParameterException;
import repicea.math.Matrix;
import repicea.math.SymmetricMatrix;
import repicea.stats.StatisticalUtility;
import repicea.stats.distributions.EmpiricalDistribution;
/**
* The JackknifeEstimate class implements the variance calculation typical of
* delete-d Jackknife variance estimator.
* @author Mathieu Fortin - February 2019
*/
@SuppressWarnings("serial")
public class JackknifeEstimate extends ResamplingBasedEstimate {
private final int n;
private final int d; // delete d observations here
/**
* Constructor.
* @param n the number of observations in the original sample
* @param d the number of left-out observations
*/
public JackknifeEstimate(int n, int d) {
super(new EmpiricalDistribution());
this.d = d;
this.n = n;
}
@Override
protected SymmetricMatrix getVarianceFromDistribution() {
long nCombinations = StatisticalUtility.getCombinations(n, d);
long nRealizations = getNumberOfRealizations();
if (nCombinations != nRealizations) {
throw new InvalidParameterException("The number of realizations is inconsistent with the n and d parameters of the constructor!");
}
SymmetricMatrix ss = getDistribution().getVariance().scalarMultiply(getNumberOfRealizations() - 1); // sum of squared difference
double scalingFactor = ((double) n - d) / (d * nCombinations);
return ss.scalarMultiply(scalingFactor);
}
@Override
public ConfidenceInterval getConfidenceIntervalBounds(double oneMinusAlpha) {
// TODO To be implemented
return null;
}
}