org.opencv.ml.NormalBayesClassifier Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of opencv Show documentation
Show all versions of opencv Show documentation
OpenCV project built for java
The newest version!
//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.ml;
import org.opencv.core.Mat;
import org.opencv.ml.NormalBayesClassifier;
import org.opencv.ml.StatModel;
// C++: class NormalBayesClassifier
/**
* Bayes classifier for normally distributed data.
*
* SEE: REF: ml_intro_bayes
*/
public class NormalBayesClassifier extends StatModel {
protected NormalBayesClassifier(long addr) { super(addr); }
// internal usage only
public static NormalBayesClassifier __fromPtr__(long addr) { return new NormalBayesClassifier(addr); }
//
// C++: float cv::ml::NormalBayesClassifier::predictProb(Mat inputs, Mat& outputs, Mat& outputProbs, int flags = 0)
//
/**
* Predicts the response for sample(s).
*
* The method estimates the most probable classes for input vectors. Input vectors (one or more)
* are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one
* output vector outputs. The predicted class for a single input vector is returned by the method.
* The vector outputProbs contains the output probabilities corresponding to each element of
* result.
* @param inputs automatically generated
* @param outputs automatically generated
* @param outputProbs automatically generated
* @param flags automatically generated
* @return automatically generated
*/
public float predictProb(Mat inputs, Mat outputs, Mat outputProbs, int flags) {
return predictProb_0(nativeObj, inputs.nativeObj, outputs.nativeObj, outputProbs.nativeObj, flags);
}
/**
* Predicts the response for sample(s).
*
* The method estimates the most probable classes for input vectors. Input vectors (one or more)
* are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one
* output vector outputs. The predicted class for a single input vector is returned by the method.
* The vector outputProbs contains the output probabilities corresponding to each element of
* result.
* @param inputs automatically generated
* @param outputs automatically generated
* @param outputProbs automatically generated
* @return automatically generated
*/
public float predictProb(Mat inputs, Mat outputs, Mat outputProbs) {
return predictProb_1(nativeObj, inputs.nativeObj, outputs.nativeObj, outputProbs.nativeObj);
}
//
// C++: static Ptr_NormalBayesClassifier cv::ml::NormalBayesClassifier::create()
//
/**
* Creates empty model
* Use StatModel::train to train the model after creation.
* @return automatically generated
*/
public static NormalBayesClassifier create() {
return NormalBayesClassifier.__fromPtr__(create_0());
}
//
// C++: static Ptr_NormalBayesClassifier cv::ml::NormalBayesClassifier::load(String filepath, String nodeName = String())
//
/**
* Loads and creates a serialized NormalBayesClassifier from a file
*
* Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk.
* Load the NormalBayesClassifier from this file again, by calling this function with the path to the file.
* Optionally specify the node for the file containing the classifier
*
* @param filepath path to serialized NormalBayesClassifier
* @param nodeName name of node containing the classifier
* @return automatically generated
*/
public static NormalBayesClassifier load(String filepath, String nodeName) {
return NormalBayesClassifier.__fromPtr__(load_0(filepath, nodeName));
}
/**
* Loads and creates a serialized NormalBayesClassifier from a file
*
* Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk.
* Load the NormalBayesClassifier from this file again, by calling this function with the path to the file.
* Optionally specify the node for the file containing the classifier
*
* @param filepath path to serialized NormalBayesClassifier
* @return automatically generated
*/
public static NormalBayesClassifier load(String filepath) {
return NormalBayesClassifier.__fromPtr__(load_1(filepath));
}
@Override
protected void finalize() throws Throwable {
delete(nativeObj);
}
// C++: float cv::ml::NormalBayesClassifier::predictProb(Mat inputs, Mat& outputs, Mat& outputProbs, int flags = 0)
private static native float predictProb_0(long nativeObj, long inputs_nativeObj, long outputs_nativeObj, long outputProbs_nativeObj, int flags);
private static native float predictProb_1(long nativeObj, long inputs_nativeObj, long outputs_nativeObj, long outputProbs_nativeObj);
// C++: static Ptr_NormalBayesClassifier cv::ml::NormalBayesClassifier::create()
private static native long create_0();
// C++: static Ptr_NormalBayesClassifier cv::ml::NormalBayesClassifier::load(String filepath, String nodeName = String())
private static native long load_0(String filepath, String nodeName);
private static native long load_1(String filepath);
// native support for java finalize()
private static native void delete(long nativeObj);
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy